mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
llama : hparams
ggml-ci
This commit is contained in:
parent
ac62ce0236
commit
0969970a48
@ -9,11 +9,12 @@ llama_add_compile_flags()
|
||||
add_library(llama
|
||||
../include/llama.h
|
||||
llama.cpp
|
||||
llama-adapter.cpp
|
||||
llama-arch.cpp
|
||||
llama-batch.cpp
|
||||
llama-chat.cpp
|
||||
llama-context.cpp
|
||||
llama-adapter.cpp
|
||||
llama-hparams.cpp
|
||||
llama-grammar.cpp
|
||||
llama-kv-cache.cpp
|
||||
llama-mmap.cpp
|
||||
|
@ -5,9 +5,10 @@
|
||||
|
||||
#include "llama-model.h" // TODO: need only hparams
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
//
|
||||
// llama_adapter_vec
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <cstdint>
|
||||
|
||||
enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_CHATML,
|
||||
|
71
src/llama-hparams.cpp
Normal file
71
src/llama-hparams.cpp
Normal file
@ -0,0 +1,71 @@
|
||||
#include "llama-hparams.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
uint32_t llama_hparams::n_head(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_kv_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_ff(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_ff_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
||||
const uint32_t n_head = this->n_head(il);
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_k * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
return 2 * n_embd;
|
||||
}
|
||||
|
||||
// TODO: maybe support other convolution strides than 1
|
||||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
||||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// corresponds to RWKV's wkv_states size
|
||||
return n_embd * wkv_head_size;
|
||||
}
|
||||
|
||||
// corresponds to Mamba's ssm_states size
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
}
|
131
src/llama-hparams.h
Normal file
131
src/llama-hparams.h
Normal file
@ -0,0 +1,131 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
|
||||
// bump if necessary
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||||
|
||||
struct llama_hparams_posnet {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams_convnext {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
bool rope_finetuned;
|
||||
bool use_par_res;
|
||||
bool swin_norm;
|
||||
|
||||
uint32_t n_vocab = 0;
|
||||
uint32_t n_ctx_train; // context size the model was trained on
|
||||
uint32_t n_embd;
|
||||
uint32_t n_embd_features = 0;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_swa = 0; // sliding window attention (SWA)
|
||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
struct llama_hparams_posnet posnet;
|
||||
struct llama_hparams_convnext convnext;
|
||||
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
uint32_t n_norm_groups = 0;
|
||||
|
||||
float expert_weights_scale = 0.0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
float f_norm_group_eps;
|
||||
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_final_logit_softcapping = 30.0f;
|
||||
|
||||
// for RWKV
|
||||
uint32_t rescale_every_n_layers = 0;
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
float rope_freq_scale_train;
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
float rope_yarn_log_mul;
|
||||
int rope_sections[4]; // TODO: actually this should be std::array (I was wrong)
|
||||
|
||||
// for State Space Models
|
||||
uint32_t ssm_d_conv = 0;
|
||||
uint32_t ssm_d_inner = 0;
|
||||
uint32_t ssm_d_state = 0;
|
||||
uint32_t ssm_dt_rank = 0;
|
||||
|
||||
bool ssm_dt_b_c_rms = false;
|
||||
|
||||
float f_clamp_kqv = 0.0f;
|
||||
float f_max_alibi_bias = 0.0f;
|
||||
float f_logit_scale = 0.0f;
|
||||
|
||||
// Additional scale factors (Granite/Granite MoE)
|
||||
float f_residual_scale = 0.0f;
|
||||
float f_embedding_scale = 0.0f;
|
||||
float f_attention_scale = 0.0f;
|
||||
|
||||
bool causal_attn = true;
|
||||
bool use_alibi = false;
|
||||
bool attn_soft_cap = false;
|
||||
|
||||
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
||||
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
||||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||||
|
||||
uint32_t n_head(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_head_kv(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_ff(uint32_t il = 0) const;
|
||||
|
||||
uint32_t n_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of key embeddings across all k-v heads
|
||||
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of value embeddings across all k-v heads
|
||||
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
||||
|
||||
// dimension of the rolling state embeddings
|
||||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
||||
uint32_t n_embd_k_s() const;
|
||||
|
||||
// dimension of the recurrent state embeddings
|
||||
uint32_t n_embd_v_s() const;
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
const char * llm_type_name(llm_type type) {
|
||||
switch (type) {
|
||||
case MODEL_14M: return "14M";
|
||||
|
@ -2,18 +2,13 @@
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-arch.h"
|
||||
#include "llama-hparams.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-mmap.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
// bump if necessary
|
||||
#define LLAMA_MAX_LAYERS 512
|
||||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||||
|
||||
// available models
|
||||
// TODO: this enum does not follow the enum naming convention
|
||||
@ -82,175 +77,6 @@ enum llm_type {
|
||||
MODEL_27B,
|
||||
};
|
||||
|
||||
struct llama_hparams_posnet {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams_convnext {
|
||||
uint32_t n_embd;
|
||||
uint32_t n_layer;
|
||||
};
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
bool rope_finetuned;
|
||||
bool use_par_res;
|
||||
bool swin_norm;
|
||||
|
||||
uint32_t n_vocab = 0;
|
||||
uint32_t n_ctx_train; // context size the model was trained on
|
||||
uint32_t n_embd;
|
||||
uint32_t n_embd_features = 0;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_swa = 0; // sliding window attention (SWA)
|
||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||||
uint32_t n_rel_attn_bkts = 0;
|
||||
|
||||
// for WavTokenizer
|
||||
struct llama_hparams_posnet posnet;
|
||||
struct llama_hparams_convnext convnext;
|
||||
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
uint32_t n_ff_exp = 0;
|
||||
uint32_t n_ff_shexp = 0;
|
||||
uint32_t n_expert_shared = 0;
|
||||
uint32_t n_norm_groups = 0;
|
||||
|
||||
float expert_weights_scale = 0.0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
float f_norm_group_eps;
|
||||
|
||||
float f_attn_logit_softcapping = 50.0f;
|
||||
float f_final_logit_softcapping = 30.0f;
|
||||
|
||||
// for RWKV
|
||||
uint32_t rescale_every_n_layers = 0;
|
||||
uint32_t time_mix_extra_dim = 0;
|
||||
uint32_t time_decay_extra_dim = 0;
|
||||
uint32_t wkv_head_size = 0;
|
||||
|
||||
float rope_attn_factor = 1.0f;
|
||||
float rope_freq_base_train;
|
||||
float rope_freq_scale_train;
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
float rope_yarn_log_mul;
|
||||
int rope_sections[4];
|
||||
|
||||
// for State Space Models
|
||||
uint32_t ssm_d_conv = 0;
|
||||
uint32_t ssm_d_inner = 0;
|
||||
uint32_t ssm_d_state = 0;
|
||||
uint32_t ssm_dt_rank = 0;
|
||||
|
||||
bool ssm_dt_b_c_rms = false;
|
||||
|
||||
float f_clamp_kqv = 0.0f;
|
||||
float f_max_alibi_bias = 0.0f;
|
||||
float f_logit_scale = 0.0f;
|
||||
|
||||
// Additional scale factors (Granite/Granite MoE)
|
||||
float f_residual_scale = 0.0f;
|
||||
float f_embedding_scale = 0.0f;
|
||||
float f_attention_scale = 0.0f;
|
||||
|
||||
bool causal_attn = true;
|
||||
bool use_alibi = false;
|
||||
bool attn_soft_cap = false;
|
||||
|
||||
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
||||
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
||||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||||
|
||||
uint32_t n_head(uint32_t il = 0) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t n_head_kv(uint32_t il = 0) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_kv_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t n_ff(uint32_t il = 0) const {
|
||||
if (il < n_layer) {
|
||||
return n_ff_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t n_gqa(uint32_t il = 0) const {
|
||||
const uint32_t n_head = this->n_head(il);
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_k * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
|
||||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
return 2 * n_embd;
|
||||
}
|
||||
|
||||
// TODO: maybe support other convolution strides than 1
|
||||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
||||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
||||
}
|
||||
|
||||
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
|
||||
if (wkv_head_size != 0) {
|
||||
// corresponds to RWKV's wkv_states size
|
||||
return n_embd * wkv_head_size;
|
||||
}
|
||||
|
||||
// corresponds to Mamba's ssm_states size
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
}
|
||||
};
|
||||
|
||||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||||
|
||||
struct llama_layer_posnet {
|
||||
// resnet
|
||||
struct ggml_tensor * norm1 = nullptr;
|
||||
@ -522,6 +348,7 @@ struct llama_model {
|
||||
llama_mmaps mappings;
|
||||
|
||||
// objects representing data potentially being locked in memory
|
||||
// TODO: should these be part of llama_context instead?
|
||||
llama_mlocks mlock_bufs;
|
||||
llama_mlocks mlock_mmaps;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user