mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 14:28:58 +01:00
control-vectors : minor code style updates
This commit is contained in:
parent
42abb46c1f
commit
0a9bc301ac
@ -573,30 +573,29 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.control_vectors.push_back(std::make_tuple(argv[i], 1.0f));
|
params.control_vectors.push_back({ 1.0f, argv[i], });
|
||||||
} else if (arg == "--control-vector-scaled") {
|
} else if (arg == "--control-vector-scaled") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
const char * control_vector = argv[i];
|
const char * fname = argv[i];
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.control_vectors.push_back(std::make_tuple(control_vector, std::stof(argv[i])));
|
params.control_vectors.push_back({ std::stof(argv[i]), fname, });
|
||||||
} else if (arg == "--control-vector-layer-range") {
|
} else if (arg == "--control-vector-layer-range") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
int32_t start = std::stoi(argv[i]);
|
params.control_vector_layer_start = std::stoi(argv[i]);
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
int32_t end = std::stoi(argv[i]);
|
params.control_vector_layer_end = std::stoi(argv[i]);
|
||||||
params.control_vector_layer_range = std::make_tuple(start, end);
|
|
||||||
} else if (arg == "--mmproj") {
|
} else if (arg == "--mmproj") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -1396,27 +1395,22 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (!params.control_vectors.empty()) {
|
if (!params.control_vectors.empty()) {
|
||||||
int32_t layer_start, layer_end;
|
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||||
std::tie(layer_start, layer_end) = params.control_vector_layer_range;
|
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||||
|
|
||||||
if (layer_start == 0) layer_start = 1;
|
const auto cvec = llama_control_vector_load(params.control_vectors);
|
||||||
if (layer_end == 0) layer_end = 31;
|
if (cvec.n_embd == -1) {
|
||||||
|
|
||||||
std::vector<float> control_vector;
|
|
||||||
int n_embd;
|
|
||||||
std::tie(control_vector, n_embd) = llama_control_vector_load(params.control_vectors);
|
|
||||||
if (n_embd == -1) {
|
|
||||||
llama_free(lctx);
|
llama_free(lctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
return std::make_tuple(nullptr, nullptr);
|
return std::make_tuple(nullptr, nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
int err = llama_control_vector_apply(lctx,
|
int err = llama_control_vector_apply(lctx,
|
||||||
control_vector.data(),
|
cvec.data.data(),
|
||||||
control_vector.size(),
|
cvec.data.size(),
|
||||||
n_embd,
|
cvec.n_embd,
|
||||||
layer_start,
|
params.control_vector_layer_start,
|
||||||
layer_end);
|
params.control_vector_layer_end);
|
||||||
if (err) {
|
if (err) {
|
||||||
llama_free(lctx);
|
llama_free(lctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
@ -1959,11 +1953,14 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
|
|||||||
// Control vector utils
|
// Control vector utils
|
||||||
//
|
//
|
||||||
|
|
||||||
static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const std::string & path, float strength) {
|
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
|
||||||
int n_tensors;
|
int32_t n_tensors;
|
||||||
|
|
||||||
size_t n_bytes = 0;
|
size_t n_bytes = 0;
|
||||||
|
|
||||||
uint32_t max_direction_layer = 0;
|
uint32_t max_direction_layer = 0;
|
||||||
int n_embd = -1;
|
|
||||||
|
llama_control_vector_data result = { -1, {} };
|
||||||
|
|
||||||
// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
|
// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
|
||||||
{
|
{
|
||||||
@ -1977,11 +1974,11 @@ static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const s
|
|||||||
/* .no_alloc = */ true,
|
/* .no_alloc = */ true,
|
||||||
/* .ctx = */ &meta_ctx,
|
/* .ctx = */ &meta_ctx,
|
||||||
};
|
};
|
||||||
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(path.c_str(), meta_gguf_params);
|
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
|
||||||
if (!meta_ctx_gguf) {
|
if (!meta_ctx_gguf) {
|
||||||
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(meta_ctx);
|
ggml_free(meta_ctx);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
|
n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
|
||||||
@ -1994,36 +1991,36 @@ static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const s
|
|||||||
try {
|
try {
|
||||||
uint32_t layer = std::stoi(name.substr(dotpos + 1));
|
uint32_t layer = std::stoi(name.substr(dotpos + 1));
|
||||||
if (layer == 0) {
|
if (layer == 0) {
|
||||||
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(meta_ctx);
|
ggml_free(meta_ctx);
|
||||||
gguf_free(meta_ctx_gguf);
|
gguf_free(meta_ctx_gguf);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
if (layer > max_direction_layer) {
|
if (layer > max_direction_layer) {
|
||||||
max_direction_layer = layer;
|
max_direction_layer = layer;
|
||||||
}
|
}
|
||||||
} catch (...) {
|
} catch (...) {
|
||||||
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(meta_ctx);
|
ggml_free(meta_ctx);
|
||||||
gguf_free(meta_ctx_gguf);
|
gguf_free(meta_ctx_gguf);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
|
struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
|
||||||
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
|
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
|
||||||
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(meta_ctx);
|
ggml_free(meta_ctx);
|
||||||
gguf_free(meta_ctx_gguf);
|
gguf_free(meta_ctx_gguf);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
if (n_embd == -1) {
|
if (result.n_embd == -1) {
|
||||||
n_embd = ggml_nelements(tensor_meta);
|
result.n_embd = ggml_nelements(tensor_meta);
|
||||||
} else if (ggml_nelements(tensor_meta) != n_embd) {
|
} else if (ggml_nelements(tensor_meta) != result.n_embd) {
|
||||||
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(meta_ctx);
|
ggml_free(meta_ctx);
|
||||||
gguf_free(meta_ctx_gguf);
|
gguf_free(meta_ctx_gguf);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
n_bytes += ggml_nbytes(tensor_meta);
|
n_bytes += ggml_nbytes(tensor_meta);
|
||||||
}
|
}
|
||||||
@ -2032,8 +2029,8 @@ static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const s
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (n_tensors == 0) {
|
if (n_tensors == 0) {
|
||||||
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
// load and scale tensors into final control vector context
|
// load and scale tensors into final control vector context
|
||||||
@ -2048,63 +2045,63 @@ static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const s
|
|||||||
/*.no_alloc = */ false,
|
/*.no_alloc = */ false,
|
||||||
/*.ctx = */ &ctx,
|
/*.ctx = */ &ctx,
|
||||||
};
|
};
|
||||||
struct gguf_context * ctx_gguf = gguf_init_from_file(path.c_str(), params);
|
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
|
||||||
if (!ctx_gguf) {
|
if (!ctx_gguf) {
|
||||||
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, path.c_str());
|
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
|
||||||
ggml_free(ctx);
|
ggml_free(ctx);
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<float> vector;
|
// do not store data for layer 0 (it's not used)
|
||||||
for (uint32_t i = 1; i < max_direction_layer; i++) {
|
result.data.resize(result.n_embd * max_direction_layer);
|
||||||
std::string name = "direction." + std::to_string(i);
|
|
||||||
ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
|
for (uint32_t il = 1; il <= max_direction_layer; il++) {
|
||||||
|
const std::string name = "direction." + std::to_string(il);
|
||||||
|
const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
|
||||||
|
|
||||||
|
float * dst = result.data.data() + result.n_embd * (il - 1);
|
||||||
|
|
||||||
if (tensor) {
|
if (tensor) {
|
||||||
const float * data = (const float *) tensor->data;
|
const float * src = (const float *) tensor->data;
|
||||||
for (int i = 0; i < n_embd; i++) {
|
for (int j = 0; j < result.n_embd; j++) {
|
||||||
vector.push_back(data[i] * strength);
|
dst[j] = src[j] * load_info.strength;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
vector.insert(vector.end(), n_embd, 0.); // as a filler
|
for (int j = 0; j < result.n_embd; j++) {
|
||||||
|
dst[j] = 0.0f;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return std::make_tuple(vector, n_embd);
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<std::vector<float>, int> llama_control_vector_load(const std::vector<std::tuple<std::string, float>> & vectors) {
|
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
|
||||||
std::vector<float> vector;
|
llama_control_vector_data result = { -1, {} };
|
||||||
int n_embd = -1;
|
|
||||||
|
|
||||||
for (const auto& pair : vectors) {
|
for (const auto & info : load_infos) {
|
||||||
std::string path;
|
auto cur = llama_control_vector_load_one(info);
|
||||||
float strength;
|
|
||||||
std::tie(path, strength) = pair;
|
|
||||||
|
|
||||||
std::vector<float> v;
|
if (cur.n_embd == -1) {
|
||||||
int v_n_embd;
|
return result;
|
||||||
std::tie(v, v_n_embd) = llama_control_vector_load_one(path, strength);
|
|
||||||
|
|
||||||
if (v_n_embd == -1) {
|
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
|
||||||
}
|
}
|
||||||
if (n_embd != -1 && (n_embd != v_n_embd || v.size() != vector.size())) {
|
if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
|
||||||
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, path.c_str());
|
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
|
||||||
return std::make_tuple(std::vector<float>(), -1);
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (n_embd == -1) {
|
if (result.n_embd == -1) {
|
||||||
vector = std::move(v);
|
result = std::move(cur);
|
||||||
n_embd = v_n_embd;
|
|
||||||
} else {
|
} else {
|
||||||
for (size_t i = 0; i < vector.size(); i++) {
|
for (size_t i = 0; i < cur.data.size(); i++) {
|
||||||
vector[i] += v[i];
|
result.data[i] += cur.data[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (n_embd == -1) {
|
if (result.n_embd == -1) {
|
||||||
fprintf(stderr, "%s: no vectors passed\n", __func__);
|
fprintf(stderr, "%s: no vectors passed\n", __func__);
|
||||||
}
|
}
|
||||||
return std::make_tuple(vector, n_embd);
|
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -37,10 +37,13 @@ extern char const *LLAMA_COMMIT;
|
|||||||
extern char const *LLAMA_COMPILER;
|
extern char const *LLAMA_COMPILER;
|
||||||
extern char const *LLAMA_BUILD_TARGET;
|
extern char const *LLAMA_BUILD_TARGET;
|
||||||
|
|
||||||
|
struct llama_control_vector_load_info;
|
||||||
|
|
||||||
|
int32_t get_num_physical_cores();
|
||||||
|
|
||||||
//
|
//
|
||||||
// CLI argument parsing
|
// CLI argument parsing
|
||||||
//
|
//
|
||||||
int32_t get_num_physical_cores();
|
|
||||||
|
|
||||||
struct gpt_params {
|
struct gpt_params {
|
||||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||||
@ -103,8 +106,10 @@ struct gpt_params {
|
|||||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||||
std::string lora_base = ""; // base model path for the lora adapter
|
std::string lora_base = ""; // base model path for the lora adapter
|
||||||
|
|
||||||
std::vector<std::tuple<std::string, float>> control_vectors; // control vector with user defined scale
|
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||||
std::tuple<int32_t, int32_t> control_vector_layer_range; // layer range for control vector
|
|
||||||
|
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||||
|
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||||
|
|
||||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||||
@ -277,8 +282,19 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
|
|||||||
// Control vector utils
|
// Control vector utils
|
||||||
//
|
//
|
||||||
|
|
||||||
// Load control vectors from a tuple of {path, strength}, scale each by strength, and add them together.
|
struct llama_control_vector_data {
|
||||||
// Returns a tuple of {concatenated vector data (n_emnd x n_layer), n_embd}
|
int n_embd;
|
||||||
// On error, returns a tuple of {empty, -1}
|
|
||||||
std::tuple<std::vector<float>, int> llama_control_vector_load(
|
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||||
const std::vector<std::tuple<std::string, float>> & vectors);
|
std::vector<float> data;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_control_vector_load_info {
|
||||||
|
float strength;
|
||||||
|
|
||||||
|
std::string fname;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Load control vectors, scale each by strength, and add them together.
|
||||||
|
// On error, returns {-1, empty}
|
||||||
|
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||||
|
18
llama.cpp
18
llama.cpp
@ -13183,6 +13183,10 @@ int32_t llama_n_embd(const struct llama_model * model) {
|
|||||||
return model->hparams.n_embd;
|
return model->hparams.n_embd;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int32_t llama_n_layer(const struct llama_model * model) {
|
||||||
|
return model->hparams.n_layer;
|
||||||
|
}
|
||||||
|
|
||||||
float llama_rope_freq_scale_train(const struct llama_model * model) {
|
float llama_rope_freq_scale_train(const struct llama_model * model) {
|
||||||
return model->hparams.rope_freq_scale_train;
|
return model->hparams.rope_freq_scale_train;
|
||||||
}
|
}
|
||||||
@ -13335,7 +13339,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
int32_t llama_control_vector_apply(struct llama_context * lctx, float * data, size_t len, int n_embd, int32_t il_start, int32_t il_end) {
|
int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
|
||||||
const llama_model & model = lctx->model;
|
const llama_model & model = lctx->model;
|
||||||
llama_control_vector & cvec = lctx->cvec;
|
llama_control_vector & cvec = lctx->cvec;
|
||||||
|
|
||||||
@ -13354,15 +13358,11 @@ int32_t llama_control_vector_apply(struct llama_context * lctx, float * data, si
|
|||||||
cvec.layer_end = il_end;
|
cvec.layer_end = il_end;
|
||||||
|
|
||||||
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
||||||
if (il >= cvec.tensors.size() || cvec.tensors[il] == nullptr) {
|
assert(cvec.tensors[il] != nullptr);
|
||||||
continue;
|
|
||||||
}
|
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||||
size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
|
||||||
if (off + n_embd <= len) {
|
if (off + n_embd <= len) {
|
||||||
ggml_backend_tensor_set(cvec.tensors[il],
|
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||||
data + off,
|
|
||||||
0,
|
|
||||||
n_embd * ggml_element_size(cvec.tensors[il]));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
5
llama.h
5
llama.h
@ -387,6 +387,7 @@ extern "C" {
|
|||||||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||||||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||||||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||||||
|
LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
|
||||||
|
|
||||||
// Get the model's RoPE frequency scaling factor
|
// Get the model's RoPE frequency scaling factor
|
||||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||||
@ -447,9 +448,9 @@ extern "C" {
|
|||||||
// See llama_control_vector_load in common to load a control vector.
|
// See llama_control_vector_load in common to load a control vector.
|
||||||
LLAMA_API int32_t llama_control_vector_apply(
|
LLAMA_API int32_t llama_control_vector_apply(
|
||||||
struct llama_context * lctx,
|
struct llama_context * lctx,
|
||||||
float * data,
|
const float * data,
|
||||||
size_t len,
|
size_t len,
|
||||||
int n_embd,
|
int32_t n_embd,
|
||||||
int32_t il_start,
|
int32_t il_start,
|
||||||
int32_t il_end);
|
int32_t il_end);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user