mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 02:19:18 +01:00
Obsolete
This commit is contained in:
parent
2e17dfd80a
commit
0ba5a3a9a5
@ -1,66 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
from tqdm import tqdm
|
||||
import requests
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: download-pth.py dir-model model-type\n")
|
||||
print(" model-type: Available models 7B, 13B, 30B or 65B")
|
||||
sys.exit(1)
|
||||
|
||||
modelsDir = sys.argv[1]
|
||||
model = sys.argv[2]
|
||||
|
||||
num = {
|
||||
"7B": 1,
|
||||
"13B": 2,
|
||||
"30B": 4,
|
||||
"65B": 8,
|
||||
}
|
||||
|
||||
if model not in num:
|
||||
print(f"Error: model {model} is not valid, provide 7B, 13B, 30B or 65B")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Downloading model {model}")
|
||||
|
||||
files = ["checklist.chk", "params.json"]
|
||||
|
||||
for i in range(num[model]):
|
||||
files.append(f"consolidated.0{i}.pth")
|
||||
|
||||
resolved_path = os.path.abspath(os.path.join(modelsDir, model))
|
||||
os.makedirs(resolved_path, exist_ok=True)
|
||||
|
||||
for file in files:
|
||||
dest_path = os.path.join(resolved_path, file)
|
||||
|
||||
if os.path.exists(dest_path):
|
||||
print(f"Skip file download, it already exists: {file}")
|
||||
continue
|
||||
|
||||
url = f"https://agi.gpt4.org/llama/LLaMA/{model}/{file}"
|
||||
response = requests.get(url, stream=True)
|
||||
with open(dest_path, 'wb') as f:
|
||||
with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
t.update(len(chunk))
|
||||
|
||||
files2 = ["tokenizer_checklist.chk", "tokenizer.model"]
|
||||
for file in files2:
|
||||
dest_path = os.path.join(modelsDir, file)
|
||||
|
||||
if os.path.exists(dest_path):
|
||||
print(f"Skip file download, it already exists: {file}")
|
||||
continue
|
||||
|
||||
url = f"https://agi.gpt4.org/llama/LLaMA/{file}"
|
||||
response = requests.get(url, stream=True)
|
||||
with open(dest_path, 'wb') as f:
|
||||
with tqdm(unit='B', unit_scale=True, miniters=1, desc=file) as t:
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
t.update(len(chunk))
|
Loading…
Reference in New Issue
Block a user