mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 22:08:46 +01:00
Better CUDA synchronization logic (#2057)
This commit is contained in:
parent
befb3a3562
commit
0bc2cdfc87
63
ggml-cuda.cu
63
ggml-cuda.cu
@ -214,6 +214,11 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
|
|||||||
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
struct ggml_tensor_extra_gpu {
|
||||||
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||||
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
|
||||||
|
};
|
||||||
|
|
||||||
static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
|
static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
|
||||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||||
|
|
||||||
@ -1970,7 +1975,6 @@ inline void ggml_cuda_op_add(
|
|||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -2002,7 +2006,6 @@ inline void ggml_cuda_op_mul(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
|
mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -2023,7 +2026,6 @@ inline void ggml_cuda_op_silu(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -2046,7 +2048,6 @@ inline void ggml_cuda_op_rms_norm(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -2125,7 +2126,6 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
|
|||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
#ifdef GGML_CUDA_DMMV_F16
|
#ifdef GGML_CUDA_DMMV_F16
|
||||||
if (src1_convert_f16) {
|
if (src1_convert_f16) {
|
||||||
@ -2202,7 +2202,6 @@ inline void ggml_cuda_op_rope(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) dst;
|
(void) dst;
|
||||||
(void) src0_ddq_i;
|
(void) src0_ddq_i;
|
||||||
@ -2226,7 +2225,6 @@ inline void ggml_cuda_op_diag_mask_inf(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) dst;
|
(void) dst;
|
||||||
(void) src0_ddq_i;
|
(void) src0_ddq_i;
|
||||||
@ -2248,7 +2246,6 @@ inline void ggml_cuda_op_soft_max(
|
|||||||
|
|
||||||
// compute
|
// compute
|
||||||
soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -2344,10 +2341,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
||||||
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
||||||
|
|
||||||
// if multiple GPUs are used they need to wait for the main GPU to finish
|
// if multiple devices are used they need to wait for the main device
|
||||||
|
// here an event is recorded that signifies that the main device has finished calculating the input data
|
||||||
if (split && g_device_count > 1) {
|
if (split && g_device_count > 1) {
|
||||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int id = 0; id < g_device_count; ++id) {
|
for (int id = 0; id < g_device_count; ++id) {
|
||||||
@ -2373,6 +2371,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
int64_t row_diff = row_high - row_low;
|
int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
cudaSetDevice(id);
|
cudaSetDevice(id);
|
||||||
|
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
||||||
|
|
||||||
|
// wait for main GPU data if necessary
|
||||||
|
if (split && id != g_main_device) {
|
||||||
|
CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
|
||||||
|
}
|
||||||
|
|
||||||
if (src0_on_device && src0_is_contiguous) {
|
if (src0_on_device && src0_is_contiguous) {
|
||||||
if (src0_is_f32) {
|
if (src0_is_f32) {
|
||||||
@ -2448,8 +2452,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
}
|
}
|
||||||
const int64_t i11 = i13*ne12 + i12;
|
const int64_t i11 = i13*ne12 + i12;
|
||||||
|
|
||||||
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
|
||||||
|
|
||||||
// for split tensors the data begins at i0 == i0_offset_low
|
// for split tensors the data begins at i0 == i0_offset_low
|
||||||
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
||||||
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
|
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
|
||||||
@ -2509,6 +2511,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
|
|
||||||
// do the computation
|
// do the computation
|
||||||
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
|
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
// copy dst to host or other device if necessary
|
// copy dst to host or other device if necessary
|
||||||
if (!dst_on_device) {
|
if (!dst_on_device) {
|
||||||
@ -2538,6 +2541,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// signify to main device that other device is done
|
||||||
|
if (split && g_device_count > 1 && id != g_main_device) {
|
||||||
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2549,7 +2557,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
}
|
}
|
||||||
|
|
||||||
CUDA_CHECK(cudaSetDevice(id));
|
CUDA_CHECK(cudaSetDevice(id));
|
||||||
CUDA_CHECK(cudaDeviceSynchronize());
|
|
||||||
|
|
||||||
if (src0_asq[id] > 0) {
|
if (src0_asq[id] > 0) {
|
||||||
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
|
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
|
||||||
@ -2564,6 +2571,21 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
|||||||
ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
|
ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// main device waits for all other devices to be finished
|
||||||
|
if (split && g_device_count > 1) {
|
||||||
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||||
|
for (int id = 0; id < g_device_count; ++id) {
|
||||||
|
if (id != g_main_device) {
|
||||||
|
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dst->backend == GGML_BACKEND_CPU) {
|
||||||
|
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||||
|
CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -2803,6 +2825,10 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
|||||||
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
||||||
|
|
||||||
extra->data_device[id] = buf;
|
extra->data_device[id] = buf;
|
||||||
|
|
||||||
|
if (backend == GGML_BACKEND_GPU_SPLIT) {
|
||||||
|
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
@ -2816,14 +2842,17 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
|||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
|
||||||
for (int id = 0; id < g_device_count; ++id) {
|
for (int id = 0; id < g_device_count; ++id) {
|
||||||
if (extra->data_device[id] == nullptr) {
|
if (extra->data_device[id] != nullptr) {
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
CUDA_CHECK(cudaSetDevice(id));
|
CUDA_CHECK(cudaSetDevice(id));
|
||||||
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (extra->events[id] != nullptr) {
|
||||||
|
CUDA_CHECK(cudaSetDevice(id));
|
||||||
|
CUDA_CHECK(cudaEventDestroy(extra->events[id]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
delete extra;
|
delete extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -8,10 +8,6 @@ extern "C" {
|
|||||||
|
|
||||||
#define GGML_CUDA_MAX_DEVICES 16
|
#define GGML_CUDA_MAX_DEVICES 16
|
||||||
|
|
||||||
struct ggml_tensor_extra_gpu {
|
|
||||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
|
||||||
};
|
|
||||||
|
|
||||||
void ggml_init_cublas(void);
|
void ggml_init_cublas(void);
|
||||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user