mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
Better CUDA synchronization logic (#2057)
This commit is contained in:
parent
befb3a3562
commit
0bc2cdfc87
63
ggml-cuda.cu
63
ggml-cuda.cu
@ -214,6 +214,11 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
|
||||
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||
#endif
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
|
||||
};
|
||||
|
||||
static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
@ -1970,7 +1975,6 @@ inline void ggml_cuda_op_add(
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
@ -2002,7 +2006,6 @@ inline void ggml_cuda_op_mul(
|
||||
|
||||
// compute
|
||||
mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
(void) dst;
|
||||
@ -2023,7 +2026,6 @@ inline void ggml_cuda_op_silu(
|
||||
|
||||
// compute
|
||||
silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
@ -2046,7 +2048,6 @@ inline void ggml_cuda_op_rms_norm(
|
||||
|
||||
// compute
|
||||
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
@ -2125,7 +2126,6 @@ inline void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
#ifdef GGML_CUDA_DMMV_F16
|
||||
if (src1_convert_f16) {
|
||||
@ -2202,7 +2202,6 @@ inline void ggml_cuda_op_rope(
|
||||
|
||||
// compute
|
||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) dst;
|
||||
(void) src0_ddq_i;
|
||||
@ -2226,7 +2225,6 @@ inline void ggml_cuda_op_diag_mask_inf(
|
||||
|
||||
// compute
|
||||
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) dst;
|
||||
(void) src0_ddq_i;
|
||||
@ -2248,7 +2246,6 @@ inline void ggml_cuda_op_soft_max(
|
||||
|
||||
// compute
|
||||
soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
@ -2344,10 +2341,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
||||
size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
|
||||
|
||||
// if multiple GPUs are used they need to wait for the main GPU to finish
|
||||
// if multiple devices are used they need to wait for the main device
|
||||
// here an event is recorded that signifies that the main device has finished calculating the input data
|
||||
if (split && g_device_count > 1) {
|
||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
|
||||
}
|
||||
|
||||
for (int id = 0; id < g_device_count; ++id) {
|
||||
@ -2373,6 +2371,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
int64_t row_diff = row_high - row_low;
|
||||
|
||||
cudaSetDevice(id);
|
||||
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
||||
|
||||
// wait for main GPU data if necessary
|
||||
if (split && id != g_main_device) {
|
||||
CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
|
||||
}
|
||||
|
||||
if (src0_on_device && src0_is_contiguous) {
|
||||
if (src0_is_f32) {
|
||||
@ -2448,8 +2452,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
}
|
||||
const int64_t i11 = i13*ne12 + i12;
|
||||
|
||||
cudaStream_t cudaStream_main = g_cudaStreams_main[id];
|
||||
|
||||
// for split tensors the data begins at i0 == i0_offset_low
|
||||
char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
||||
float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
|
||||
@ -2509,6 +2511,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
|
||||
// do the computation
|
||||
op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// copy dst to host or other device if necessary
|
||||
if (!dst_on_device) {
|
||||
@ -2538,6 +2541,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
|
||||
}
|
||||
}
|
||||
|
||||
// signify to main device that other device is done
|
||||
if (split && g_device_count > 1 && id != g_main_device) {
|
||||
CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2549,7 +2557,6 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaSetDevice(id));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
if (src0_asq[id] > 0) {
|
||||
ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
|
||||
@ -2564,6 +2571,21 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
|
||||
}
|
||||
}
|
||||
|
||||
// main device waits for all other devices to be finished
|
||||
if (split && g_device_count > 1) {
|
||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||
for (int id = 0; id < g_device_count; ++id) {
|
||||
if (id != g_main_device) {
|
||||
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -2803,6 +2825,10 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
||||
|
||||
extra->data_device[id] = buf;
|
||||
|
||||
if (backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
|
||||
}
|
||||
}
|
||||
|
||||
tensor->extra = extra;
|
||||
@ -2816,14 +2842,17 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
for (int id = 0; id < g_device_count; ++id) {
|
||||
if (extra->data_device[id] == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (extra->data_device[id] != nullptr) {
|
||||
CUDA_CHECK(cudaSetDevice(id));
|
||||
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
||||
}
|
||||
|
||||
if (extra->events[id] != nullptr) {
|
||||
CUDA_CHECK(cudaSetDevice(id));
|
||||
CUDA_CHECK(cudaEventDestroy(extra->events[id]));
|
||||
}
|
||||
}
|
||||
|
||||
delete extra;
|
||||
}
|
||||
|
||||
|
@ -8,10 +8,6 @@ extern "C" {
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
};
|
||||
|
||||
void ggml_init_cublas(void);
|
||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user