From 0c19ae70d5a10e563b43a4cbd7112a2df74f2246 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 14 Aug 2023 12:56:48 +0300 Subject: [PATCH] simple : minor style changes --- convert-llama-h5-to-gguf.py | 10 +- examples/gguf/gguf-llama-simple.cpp | 138 ++++++++------------------- examples/simple/simple.cpp | 143 +++++++++------------------- gguf-util.h | 3 +- 4 files changed, 92 insertions(+), 202 deletions(-) diff --git a/convert-llama-h5-to-gguf.py b/convert-llama-h5-to-gguf.py index 402fdb68b..0bce659e6 100644 --- a/convert-llama-h5-to-gguf.py +++ b/convert-llama-h5-to-gguf.py @@ -2,17 +2,18 @@ import gguf import gguf_namemap as tmap + import os import sys import struct import json import numpy as np +import torch + from typing import Any, List from pathlib import Path -import torch from sentencepiece import SentencePieceProcessor - #NDArray = np.ndarray[Any, Any] # compatible with python < 3.9 NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' @@ -225,7 +226,7 @@ for part_name in part_names: sys.exit() n_dims = len(data.shape) - data_dtype = data.dtype + data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: @@ -268,7 +269,6 @@ for part_name in part_names: for name in model_part.keys(): data = model_part[name] - old_dtype = data.dtype # we don't need these @@ -295,7 +295,7 @@ for part_name in part_names: sys.exit() n_dims = len(data.shape) - data_dtype = data.dtype + data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: diff --git a/examples/gguf/gguf-llama-simple.cpp b/examples/gguf/gguf-llama-simple.cpp index 35c3c8183..fa8fc6fef 100644 --- a/examples/gguf/gguf-llama-simple.cpp +++ b/examples/gguf/gguf-llama-simple.cpp @@ -6,177 +6,121 @@ #include "gguf-llama.h" #include "build-info.h" -#include -#include #include #include -#include -#include -#include -#include #include #include -#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) -#include -#include -#elif defined (_WIN32) -#define WIN32_LEAN_AND_MEAN -#define NOMINMAX -#include -#include -#endif - - - -int main(int argc, char ** argv) -{ +int main(int argc, char ** argv) { gpt_params params; - //--------------------------------- - // Print help : - //--------------------------------- - - if ( argc == 1 || argv[1][0] == '-' ) - { - printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); + if (argc == 1 || argv[1][0] == '-') { + printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); return 1 ; } - //--------------------------------- - // Load parameters : - //--------------------------------- - - if ( argc >= 2 ) - { + if (argc >= 2) { params.model = argv[1]; } - if ( argc >= 3 ) - { + if (argc >= 3) { params.prompt = argv[2]; } - if ( params.prompt.empty() ) - { + if (params.prompt.empty()) { params.prompt = "Hello my name is"; } - //--------------------------------- - // Init LLM : - //--------------------------------- + // init LLM llama_backend_init(params.numa); llama_context_params ctx_params = llama_context_default_params(); llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); - - if ( model == NULL ) - { - fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); + + if (model == NULL) { + fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } llama_context * ctx = llama_new_context_with_model(model, ctx_params); - //--------------------------------- - // Tokenize the prompt : - //--------------------------------- + // tokenize the prompt std::vector tokens_list; - tokens_list = ::llama_tokenize( ctx , params.prompt , true ); + tokens_list = ::llama_tokenize(ctx, params.prompt, true); - const int max_context_size = llama_n_ctx( ctx ); - const int max_tokens_list_size = max_context_size - 4 ; + const int max_context_size = llama_n_ctx(ctx); + const int max_tokens_list_size = max_context_size - 4; - if ( (int)tokens_list.size() > max_tokens_list_size ) - { - fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" , - __func__ , (int)tokens_list.size() , max_tokens_list_size ); + if ((int)tokens_list.size() > max_tokens_list_size) { + fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); return 1; } - fprintf( stderr, "\n\n" ); + fprintf(stderr, "\n\n"); - // Print the tokens from the prompt : - - for( auto id : tokens_list ) - { - printf( "%s" , llama_token_to_str( ctx , id ) ); + for (auto id : tokens_list) { + fprintf(stderr, "%s", llama_token_to_str(ctx, id)); } - fflush(stdout); + fflush(stderr); - - //--------------------------------- - // Main prediction loop : - //--------------------------------- + // main loop // The LLM keeps a contextual cache memory of previous token evaluation. // Usually, once this cache is full, it is required to recompute a compressed context based on previous // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist // example, we will just stop the loop once this cache is full or once an end of stream is detected. - while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) - { - //--------------------------------- - // Evaluate the tokens : - //--------------------------------- + while (llama_get_kv_cache_token_count(ctx) < max_context_size) { + // evaluate the transformer - if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) - { - fprintf( stderr, "%s : failed to eval\n" , __func__ ); + if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } tokens_list.clear(); - //--------------------------------- - // Select the best prediction : - //--------------------------------- + // sample the next token llama_token new_token_id = 0; - auto logits = llama_get_logits( ctx ); - auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) + auto logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); std::vector candidates; - candidates.reserve( n_vocab ); + candidates.reserve(n_vocab); - for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) - { - candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - // Select it using the "Greedy sampling" method : - new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); - + new_token_id = llama_sample_token_greedy(ctx , &candidates_p); // is it an end of stream ? - if ( new_token_id == llama_token_eos() ) - { + if (new_token_id == llama_token_eos()) { fprintf(stderr, " [end of text]\n"); break; } - // Print the new token : - printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); - fflush( stdout ); + // print the new token : + printf("%s", llama_token_to_str(ctx, new_token_id)); + fflush(stdout); - // Push this new token for next evaluation : - tokens_list.push_back( new_token_id ); + // push this new token for next evaluation + tokens_list.push_back(new_token_id); - } // wend of main loop + } - llama_free( ctx ); - llama_free_model( model ); + llama_free(ctx); + llama_free_model(model); llama_backend_free(); return 0; } - -// EOF diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index 97137a658..55cce1044 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -2,180 +2,125 @@ #define _GNU_SOURCE #endif -#include "common.h" -#include "llama.h" #include "build-info.h" -#include -#include +#include "common.h" +#include "llama.h" + #include #include -#include -#include -#include -#include #include #include -#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) -#include -#include -#elif defined (_WIN32) -#define WIN32_LEAN_AND_MEAN -#define NOMINMAX -#include -#include -#endif - - - -int main(int argc, char ** argv) -{ +int main(int argc, char ** argv) { gpt_params params; - //--------------------------------- - // Print help : - //--------------------------------- - - if ( argc == 1 || argv[1][0] == '-' ) - { - printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); + if (argc == 1 || argv[1][0] == '-') { + printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]); return 1 ; } - //--------------------------------- - // Load parameters : - //--------------------------------- - - if ( argc >= 2 ) - { + if (argc >= 2) { params.model = argv[1]; } - if ( argc >= 3 ) - { + if (argc >= 3) { params.prompt = argv[2]; } - if ( params.prompt.empty() ) - { + if (params.prompt.empty()) { params.prompt = "Hello my name is"; } - //--------------------------------- - // Init LLM : - //--------------------------------- + // init LLM llama_backend_init(params.numa); llama_model * model; llama_context * ctx; - std::tie(model, ctx) = llama_init_from_gpt_params( params ); + std::tie(model, ctx) = llama_init_from_gpt_params(params); - if ( model == NULL ) - { - fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); + if (model == NULL) { + fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } - //--------------------------------- - // Tokenize the prompt : - //--------------------------------- + // tokenize the prompt std::vector tokens_list; - tokens_list = ::llama_tokenize( ctx , params.prompt , true ); + tokens_list = ::llama_tokenize(ctx, params.prompt, true); - const int max_context_size = llama_n_ctx( ctx ); - const int max_tokens_list_size = max_context_size - 4 ; + const int max_context_size = llama_n_ctx(ctx); + const int max_tokens_list_size = max_context_size - 4; - if ( (int)tokens_list.size() > max_tokens_list_size ) - { - fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" , - __func__ , (int)tokens_list.size() , max_tokens_list_size ); + if ((int)tokens_list.size() > max_tokens_list_size) { + fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); return 1; } - fprintf( stderr, "\n\n" ); + fprintf(stderr, "\n\n"); - // Print the tokens from the prompt : - - for( auto id : tokens_list ) - { - printf( "%s" , llama_token_to_str( ctx , id ) ); + for (auto id : tokens_list) { + fprintf(stderr, "%s", llama_token_to_str(ctx, id)); } - fflush(stdout); + fflush(stderr); - - //--------------------------------- - // Main prediction loop : - //--------------------------------- + // main loop // The LLM keeps a contextual cache memory of previous token evaluation. // Usually, once this cache is full, it is required to recompute a compressed context based on previous // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist // example, we will just stop the loop once this cache is full or once an end of stream is detected. - while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) - { - //--------------------------------- - // Evaluate the tokens : - //--------------------------------- + while (llama_get_kv_cache_token_count( ctx ) < max_context_size) { + // evaluate the transformer - if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) - { - fprintf( stderr, "%s : failed to eval\n" , __func__ ); + if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } tokens_list.clear(); - //--------------------------------- - // Select the best prediction : - //--------------------------------- + // sample the next token llama_token new_token_id = 0; - auto logits = llama_get_logits( ctx ); - auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) + auto logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(ctx); std::vector candidates; - candidates.reserve( n_vocab ); + candidates.reserve(n_vocab); - for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) - { - candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - // Select it using the "Greedy sampling" method : - new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); - + new_token_id = llama_sample_token_greedy(ctx , &candidates_p); // is it an end of stream ? - if ( new_token_id == llama_token_eos() ) - { + if (new_token_id == llama_token_eos()) { fprintf(stderr, " [end of text]\n"); break; } - // Print the new token : - printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); - fflush( stdout ); + // print the new token : + printf("%s", llama_token_to_str(ctx, new_token_id)); + fflush(stdout); - // Push this new token for next evaluation : - tokens_list.push_back( new_token_id ); + // push this new token for next evaluation + tokens_list.push_back(new_token_id); - } // wend of main loop + } - llama_free( ctx ); - llama_free_model( model ); + llama_free(ctx); + llama_free_model(model); llama_backend_free(); return 0; } - -// EOF diff --git a/gguf-util.h b/gguf-util.h index db0233cfc..6bbabf667 100644 --- a/gguf-util.h +++ b/gguf-util.h @@ -5,7 +5,9 @@ #ifndef GGUF_UTIL_H #define GGUF_UTIL_H + #include "ggml.h" + #include #include #include @@ -62,7 +64,6 @@ static std::string format(const char * fmt, ...) { return std::string(buf.data(), size); } - template static std::string to_string(const T & val) { std::stringstream ss;