mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 14:20:31 +01:00
Merge branch 'master' into ceb/bert-tokenizer-fixes
This commit is contained in:
commit
0d052cbe39
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@ -28,6 +28,8 @@ COPY . .
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
|
@ -40,6 +40,11 @@ ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@ -15,6 +15,9 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
|
||||
RUN make
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
|
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@ -22,11 +22,16 @@ COPY . .
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/server /server
|
||||
|
||||
ENTRYPOINT [ "/server" ]
|
||||
|
@ -4,7 +4,7 @@ FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
apt-get install -y git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@ -16,11 +16,14 @@ RUN mkdir build && \
|
||||
echo "LLAMA_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/build/bin/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
@ -40,6 +40,11 @@ ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT [ "/app/server" ]
|
||||
|
@ -11,12 +11,16 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk
|
||||
|
||||
# Install cURL
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DLLAMA_VULKAN=1 && \
|
||||
cmake .. -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
# Clean up
|
||||
|
@ -3,16 +3,21 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
44
.github/workflows/bench.yml
vendored
44
.github/workflows/bench.yml
vendored
@ -24,15 +24,15 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
|
||||
pull_request:
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}-${{ github.event.inputs.sha }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -42,11 +42,21 @@ jobs:
|
||||
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
|
||||
N_USERS: 8
|
||||
DURATION: 10m
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
model: [phi-2]
|
||||
ftype: [q4_0, q8_0, f16]
|
||||
include:
|
||||
- model: phi-2
|
||||
ftype: q4_0
|
||||
pr_comment_enabled: "true"
|
||||
|
||||
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }}
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
@ -116,7 +126,7 @@ jobs:
|
||||
--scenario script.js \
|
||||
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
||||
--hf-repo ggml-org/models \
|
||||
--hf-file phi-2/ggml-model-q4_0.gguf \
|
||||
--hf-file ${{ matrix.model }}/ggml-model-${{ matrix.ftype }}.gguf \
|
||||
--model-path-prefix /models \
|
||||
--parallel ${{ env.N_USERS }} \
|
||||
-ngl 33 \
|
||||
@ -134,7 +144,7 @@ jobs:
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: benchmark-results
|
||||
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
@ -143,11 +153,10 @@ jobs:
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
continue-on-error: true # If not authorized on external repo
|
||||
with:
|
||||
authToken: ${{secrets.GITHUB_TOKEN}}
|
||||
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
|
||||
context: bench-server-baseline
|
||||
context: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
description: |
|
||||
${{ env.BENCH_RESULTS }}
|
||||
state: 'success'
|
||||
@ -204,11 +213,19 @@ jobs:
|
||||
- name: Comment PR
|
||||
uses: mshick/add-pr-comment@v2
|
||||
id: comment_pr
|
||||
if: ${{ github.event.pull_request != '' }}
|
||||
if: ${{ github.event.pull_request != '' && matrix.pr_comment_enabled == 'true' }}
|
||||
with:
|
||||
message-id: bench-${{ github.job }}-${{ env.RUNNER_LABEL }}
|
||||
message-id: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
message: |
|
||||
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
|
||||
<p align="center">
|
||||
|
||||
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_ for `${{ matrix.model }}`-`${{ matrix.ftype }}`: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
|
||||
|
||||
</p>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Expand details for performance related PR only</summary>
|
||||
|
||||
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
|
||||
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(90)=${{ env.HTTP_REQ_DURATION_P_90_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
|
||||
@ -216,9 +233,6 @@ jobs:
|
||||
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(90)=${{ env.LLAMACPP_TOKENS_SECOND_P_90_ }}tk/s **total=${{ env.LLAMACPP_COMPLETION_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
|
||||
- ${{ env.BENCH_GRAPH_XLABEL }}
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Time series</summary>
|
||||
|
||||
<p align="center">
|
||||
|
||||
|
96
.github/workflows/build.yml
vendored
96
.github/workflows/build.yml
vendored
@ -16,7 +16,7 @@ on:
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
@ -31,7 +31,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -76,10 +76,10 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-latest
|
||||
@ -87,7 +87,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -132,10 +132,10 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
@ -146,7 +146,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -158,7 +158,7 @@ jobs:
|
||||
with:
|
||||
node-version: "20"
|
||||
|
||||
- uses: actions/setup-python@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
@ -181,7 +181,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -203,7 +203,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -249,7 +249,7 @@ jobs:
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# id: checkout
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# id: depends
|
||||
@ -283,7 +283,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -311,7 +311,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -357,7 +357,7 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -398,7 +398,7 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -418,7 +418,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -449,7 +449,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -593,7 +593,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@ -723,10 +723,10 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
name: llama-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cuda:
|
||||
runs-on: windows-latest
|
||||
@ -739,7 +739,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@ -779,10 +779,10 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
run: |
|
||||
@ -793,10 +793,10 @@ jobs:
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
path: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
@ -812,7 +812,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@ -844,17 +844,17 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
@ -864,7 +864,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up JDK
|
||||
uses: actions/setup-java@v3
|
||||
@ -887,7 +887,7 @@ jobs:
|
||||
# runs-on: macos-12
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.19.0
|
||||
@ -918,7 +918,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@ -937,7 +937,7 @@ jobs:
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
uses: actions/download-artifact@v4
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
@ -978,7 +978,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@ -1002,7 +1002,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@ -1026,7 +1026,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@ -1056,7 +1056,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@ -1072,7 +1072,7 @@ jobs:
|
||||
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# uses: actions/upload-artifact@v1
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: llama-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
@ -1095,7 +1095,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@ -1127,7 +1127,7 @@ jobs:
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# if: matrix.blas == 'ON'
|
||||
# uses: actions/upload-artifact@v1
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: llama-blas-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
@ -1141,7 +1141,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
|
4
.github/workflows/code-coverage.yml
vendored
4
.github/workflows/code-coverage.yml
vendored
@ -6,7 +6,7 @@ env:
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -14,7 +14,7 @@ jobs:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
|
4
.github/workflows/docker.yml
vendored
4
.github/workflows/docker.yml
vendored
@ -16,7 +16,7 @@ on:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -46,7 +46,7 @@ jobs:
|
||||
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
4
.github/workflows/editorconfig.yml
vendored
4
.github/workflows/editorconfig.yml
vendored
@ -15,13 +15,13 @@ on:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: editorconfig-checker/action-editorconfig-checker@main
|
||||
- run: editorconfig-checker
|
||||
|
4
.github/workflows/gguf-publish.yml
vendored
4
.github/workflows/gguf-publish.yml
vendored
@ -24,9 +24,9 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.9.x'
|
||||
- name: Install dependencies
|
||||
|
2
.github/workflows/nix-ci-aarch64.yml
vendored
2
.github/workflows/nix-ci-aarch64.yml
vendored
@ -18,7 +18,7 @@ on:
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
|
2
.github/workflows/nix-ci.yml
vendored
2
.github/workflows/nix-ci.yml
vendored
@ -9,7 +9,7 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
|
@ -17,7 +17,7 @@ on:
|
||||
- 'requirements/*.txt'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -26,9 +26,9 @@ jobs:
|
||||
name: check-requirements
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
|
6
.github/workflows/python-lint.yml
vendored
6
.github/workflows/python-lint.yml
vendored
@ -3,7 +3,7 @@ name: flake8 Lint
|
||||
on: [push, pull_request]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -12,9 +12,9 @@ jobs:
|
||||
name: Lint
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: flake8 Lint
|
||||
|
48
.github/workflows/server.yml
vendored
48
.github/workflows/server.yml
vendored
@ -4,6 +4,10 @@ name: Server
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
sha:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
slow_tests:
|
||||
description: 'Run slow tests'
|
||||
required: true
|
||||
@ -11,15 +15,15 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
pull_request:
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
schedule:
|
||||
- cron: '0 0 * * *'
|
||||
- cron: '2 4 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -44,25 +48,45 @@ jobs:
|
||||
options: --cpus 4
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get -y install \
|
||||
build-essential \
|
||||
xxd \
|
||||
git \
|
||||
cmake \
|
||||
python3-pip \
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
libcurl4-openssl-dev
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Verify server deps
|
||||
id: verify_server_deps
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server
|
||||
git ls-files --others --modified
|
||||
git status
|
||||
./deps.sh
|
||||
git status
|
||||
not_ignored_files="$(git ls-files --others --modified)"
|
||||
echo "Modified files: ${not_ignored_files}"
|
||||
if [ -n "${not_ignored_files}" ]; then
|
||||
echo "Repository is dirty or server deps are not built as expected"
|
||||
echo "${not_ignored_files}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@ -102,7 +126,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
4
.github/workflows/zig-build.yml
vendored
4
.github/workflows/zig-build.yml
vendored
@ -7,7 +7,7 @@ on:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
@ -18,7 +18,7 @@ jobs:
|
||||
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 0
|
||||
|
@ -113,6 +113,9 @@ option(LLAMA_METAL "llama: use Metal"
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_METAL_EMBED_LIBRARY "llama: embed Metal library" OFF)
|
||||
set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
"llama: metal minimum macOS version")
|
||||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
@ -250,6 +253,16 @@ if (LLAMA_METAL)
|
||||
set(XC_FLAGS -O3)
|
||||
endif()
|
||||
|
||||
# Append macOS metal versioning flags
|
||||
if (LLAMA_METAL_MACOSX_VERSION_MIN)
|
||||
message(STATUS "Adding -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
|
||||
list(APPEND XC_FLAGS -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN})
|
||||
endif()
|
||||
if (LLAMA_METAL_STD)
|
||||
message(STATUS "Adding -std=${LLAMA_METAL_STD} flag to metal compilation")
|
||||
list(APPEND XC_FLAGS -std=${LLAMA_METAL_STD})
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
|
4
Makefile
4
Makefile
@ -867,6 +867,10 @@ passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
swift: examples/batched.swift
|
||||
(cd examples/batched.swift; make build)
|
||||
|
462
README-sycl.md
462
README-sycl.md
@ -3,7 +3,7 @@
|
||||
- [Background](#background)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Intel GPU](#intel-gpu)
|
||||
- [Supported Devices](#supported-devices)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Windows](#windows)
|
||||
@ -14,17 +14,25 @@
|
||||
|
||||
## Background
|
||||
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
|
||||
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
|
||||
|
||||
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
|
||||
### Llama.cpp + SYCL
|
||||
This SYCL "backend" follows the same design found in other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. The oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
The llama.cpp for SYCL is used to support Intel GPUs.
|
||||
The llama.cpp SYCL backend supports:
|
||||
- Intel GPUs.
|
||||
- Nvidia GPUs.
|
||||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
*Upcoming support: AMD GPUs*.
|
||||
|
||||
When targetting **Intel CPUs**, it is recommended to use llama.cpp for [x86_64](README.md#intel-onemkl) approach.
|
||||
|
||||
## News
|
||||
|
||||
@ -51,9 +59,16 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|Windows|Support|Windows 11|
|
||||
|
||||
|
||||
## Intel GPU
|
||||
## Supported devices
|
||||
|
||||
### Verified
|
||||
### Intel GPUs
|
||||
|
||||
The oneAPI Math Kernel Library, which the oneAPI base-toolkit includes, supports intel GPUs. In order to make it "visible", simply run the following:
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
- **Tested devices**
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
@ -63,198 +78,229 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|
||||
|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|
|
||||
|
||||
Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.
|
||||
*Notes:*
|
||||
|
||||
### Memory
|
||||
- Device memory can be a limitation when running a large model on an intel GPU. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`.
|
||||
|
||||
The memory is a limitation to run LLM on GPUs.
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPUs and 4.0GB for discrete GPUs.
|
||||
|
||||
When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like `llm_load_tensors: buffer size = 3577.56 MiB`.
|
||||
- If the iGPU has less than 80 EUs *(Execution Unit)*, the inference speed will likely be too slow for practical use.
|
||||
|
||||
For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.
|
||||
### Nvidia GPUs
|
||||
The BLAS acceleration on Nvidia GPUs through oneAPI can be obtained using the Nvidia plugins for oneAPI and the cuBLAS backend of the upstream oneMKL library. Details and instructions on how to setup the runtime and library can be found in [this section](#i-setup-environment)
|
||||
|
||||
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
|
||||
- **Tested devices**
|
||||
|
||||
## Nvidia GPU
|
||||
|
||||
### Verified
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|Nvidia GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
|Ampere Series| Support| A100|
|
||||
|Ampere Series| Support| A100, A4000|
|
||||
|Ampere Series *(Mobile)*| Support| RTX 40 Series|
|
||||
|
||||
### oneMKL for CUDA
|
||||
*Notes:*
|
||||
- Support for Nvidia targets through oneAPI is currently limited to Linux platforms.
|
||||
|
||||
The current oneMKL release does not contain the oneMKL cuBlas backend.
|
||||
As a result for Nvidia GPU's oneMKL must be built from source.
|
||||
- Please make sure the native oneAPI MKL *(dedicated to intel CPUs and GPUs)* is not "visible" at this stage to properly setup and use the built-from-source oneMKL with cuBLAS backend in llama.cpp for Nvidia GPUs.
|
||||
|
||||
```
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja .. -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON
|
||||
ninja
|
||||
// Add paths as necessary
|
||||
```
|
||||
|
||||
## Docker
|
||||
|
||||
Note:
|
||||
- Only docker on Linux is tested. Docker on WSL may not work.
|
||||
- You may need to install Intel GPU driver on the host machine (See the [Linux](#linux) section to know how to do that)
|
||||
|
||||
### Build the image
|
||||
|
||||
You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
|
||||
|
||||
The docker build option is currently limited to *intel GPU* targets.
|
||||
### Build image
|
||||
```sh
|
||||
# For F16:
|
||||
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Or, for F32:
|
||||
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Note: you can also use the ".devops/server-intel.Dockerfile", which compiles the "server" example
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
|
||||
```
|
||||
|
||||
### Run
|
||||
*Notes*:
|
||||
|
||||
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command.
|
||||
|
||||
You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative.
|
||||
|
||||
### Run container
|
||||
|
||||
```sh
|
||||
# Firstly, find all the DRI cards:
|
||||
# First, find all the DRI cards
|
||||
ls -la /dev/dri
|
||||
# Then, pick the card that you want to use.
|
||||
|
||||
# For example with "/dev/dri/card1"
|
||||
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
|
||||
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.
|
||||
|
||||
## Linux
|
||||
|
||||
### Setup Environment
|
||||
### I. Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
1. **Install GPU drivers**
|
||||
|
||||
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
|
||||
- **Intel GPU**
|
||||
|
||||
Note: for iGPU, please install the client GPU driver.
|
||||
Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).
|
||||
|
||||
b. Add user to group: video, render.
|
||||
*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).
|
||||
|
||||
Once installed, add the user(s) to the `video` and `render` groups.
|
||||
|
||||
```sh
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
sudo usermod -aG render $USER
|
||||
sudo usermod -aG video $USER
|
||||
```
|
||||
|
||||
Note: re-login to enable it.
|
||||
*Note*: logout/re-login for the changes to take effect.
|
||||
|
||||
c. Check
|
||||
Verify installation through `clinfo`:
|
||||
|
||||
```sh
|
||||
sudo apt install clinfo
|
||||
sudo clinfo -l
|
||||
```
|
||||
|
||||
Output (example):
|
||||
Sample output:
|
||||
|
||||
```
|
||||
```sh
|
||||
Platform #0: Intel(R) OpenCL Graphics
|
||||
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
|
||||
|
||||
|
||||
Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
2. Install Intel® oneAPI Base toolkit.
|
||||
- **Nvidia GPU**
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cublas)-* are installed.
|
||||
Installation can be verified by running the following:
|
||||
```sh
|
||||
nvidia-smi
|
||||
```
|
||||
Please make sure at least one CUDA device is available, which can be displayed like this *(here an A100-40GB Nvidia GPU)*:
|
||||
```
|
||||
+---------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |
|
||||
|-----------------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|=========================================+======================+======================|
|
||||
| 0 NVIDIA A100-PCIE-40GB On | 00000000:8D:00.0 Off | 0 |
|
||||
| N/A 36C P0 57W / 250W | 4MiB / 40960MiB | 0% Default |
|
||||
| | | Disabled |
|
||||
+-----------------------------------------+----------------------+----------------------+
|
||||
```
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
|
||||
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
b. Check
|
||||
- **Base installation**
|
||||
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
|
||||
**oneMKL**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
mkdir -p buildWithCublas && cd buildWithCublas
|
||||
cmake ../ -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
make
|
||||
```
|
||||
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
- **Intel GPU**
|
||||
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
|
||||
|
||||
Output (example):
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
|
||||
```
|
||||
|
||||
2. Build locally:
|
||||
- **Nvidia GPU**
|
||||
|
||||
Note:
|
||||
- You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
Similarly, user targetting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
```sh
|
||||
mkdir -p build
|
||||
cd build
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# For FP16:
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Or, for FP32:
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# For Nvidia GPUs
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Build example/main only
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
# Or, build all binary
|
||||
cmake --build . --config Release -v
|
||||
|
||||
cd ..
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
#### Nvidia GPU
|
||||
```sh
|
||||
./examples/sycl/build.sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
```
|
||||
|
||||
### Run
|
||||
### III. Run the inference
|
||||
|
||||
1. Put model file to folder **models**
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
```
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
3. List devices information
|
||||
|
||||
Run without parameter:
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```sh
|
||||
./build/bin/ls-sycl-device
|
||||
|
||||
# or running the "main" executable and look at the output log:
|
||||
|
||||
./build/bin/main
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
|
||||
```
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
@ -270,15 +316,15 @@ found 6 SYCL devices:
|
||||
|
||||
|Attribute|Note|
|
||||
|-|-|
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|compute capability 1.3|Level-zero driver/runtime, recommended |
|
||||
|compute capability 3.0|OpenCL driver/runtime, slower than level-zero in most cases|
|
||||
|
||||
4. Device selection and execution of llama.cpp
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
- Single device: Use one device target specified by the user.
|
||||
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
|
||||
|
||||
|Device selection|Parameter|
|
||||
|-|-|
|
||||
@ -303,74 +349,64 @@ or run by script:
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
or run by script:
|
||||
|
||||
Otherwise, you can run the script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
Note:
|
||||
*Notes:*
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `/bin/main` if faced with the issue.
|
||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||
|
||||
|
||||
5. Verify the device ID in output
|
||||
|
||||
Verify to see if the selected GPU is shown in the output, like:
|
||||
|
||||
```
|
||||
```sh
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Or
|
||||
```
|
||||
```sh
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
|
||||
## Windows
|
||||
|
||||
### Setup Environment
|
||||
### I. Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
1. Install GPU driver
|
||||
|
||||
Please install Intel GPU driver by official guide: [Install GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
|
||||
Note: **The driver is mandatory for compute function**.
|
||||
2. Install Visual Studio
|
||||
|
||||
2. Install Visual Studio.
|
||||
If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).
|
||||
|
||||
Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact oneAPI environment enabling in Windows.
|
||||
3. Install Intel® oneAPI Base toolkit
|
||||
|
||||
3. Install Intel® oneAPI Base toolkit.
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
|
||||
|
||||
Recommend to install to default folder: **C:\Program Files (x86)\Intel\oneAPI**.
|
||||
|
||||
Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
b. Enable oneAPI running environment:
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
- On the command prompt, enable the runtime environment with the following:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
c. Check GPU
|
||||
c. Verify installation
|
||||
|
||||
In oneAPI command line:
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
|
||||
```
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
|
||||
|
||||
Output (example):
|
||||
```
|
||||
@ -380,7 +416,7 @@ Output (example):
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
|
||||
```
|
||||
|
||||
4. Install cmake & make
|
||||
4. Install build tools
|
||||
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
|
||||
@ -390,76 +426,53 @@ b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
- Add the **bin** folder path in the Windows system PATH environment, like `C:\xxx\w64devkit\bin\`.
|
||||
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
|
||||
|
||||
### Build locally:
|
||||
### II. Build llama.cpp
|
||||
|
||||
In oneAPI command line window:
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
```
|
||||
mkdir -p build
|
||||
cd build
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cd ..
|
||||
make
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Note:
|
||||
*Notes:*
|
||||
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`.
|
||||
|
||||
### Run
|
||||
### III. Run the inference
|
||||
|
||||
1. Put model file to folder **models**
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
On the oneAPI command line window, run the following and step into the llama.cpp directory:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
3. List devices information
|
||||
|
||||
Run without parameter:
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```
|
||||
build\bin\ls-sycl-device.exe
|
||||
|
||||
or
|
||||
|
||||
build\bin\main.exe
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
|
||||
```
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
@ -480,7 +493,7 @@ found 6 SYCL devices:
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
|
||||
4. Device selection and execution of llama.cpp
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
@ -505,7 +518,7 @@ build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be
|
||||
```
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
or run by script:
|
||||
Otherwise, run the following wrapper script:
|
||||
|
||||
```
|
||||
.\examples\sycl\win-run-llama2.bat
|
||||
@ -513,19 +526,14 @@ or run by script:
|
||||
|
||||
Note:
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `main.exe` if faced with the issue.
|
||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||
|
||||
|
||||
|
||||
5. Verify the device ID in output
|
||||
|
||||
Verify to see if the selected GPU is shown in the output, like:
|
||||
|
||||
```
|
||||
```sh
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Or
|
||||
```
|
||||
```sh
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
@ -535,64 +543,54 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|
||||
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|
||||
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|
||||
|CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|
|
||||
|
||||
#### Running
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.|
|
||||
|LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA|Set the SYCL target device type.|
|
||||
|LLAMA_SYCL_F16|OFF *(default)* \|ON *(optional)*|Enable FP16 build with SYCL code path.|
|
||||
|CMAKE_C_COMPILER|icx|Set *icx* compiler for SYCL code path.|
|
||||
|CMAKE_CXX_COMPILER|icpx *(Linux)*, icx *(Windows)*|Set `icpx/icx` compiler for SYCL code path.|
|
||||
|
||||
#### Runtime
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
|
||||
|
||||
## Known Issue
|
||||
## Known Issues
|
||||
|
||||
- Hang during startup
|
||||
- Hanging during startup
|
||||
|
||||
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
|
||||
llama.cpp uses *mmap* as the default mode for reading the model file and copying it to the GPU. In some systems, `memcpy` might behave abnormally and therefore hang.
|
||||
|
||||
Solution: add **--no-mmap** or **--mmap 0**.
|
||||
- **Solution**: add `--no-mmap` or `--mmap 0` flag to the `main` executable.
|
||||
|
||||
- Split-mode: [row] is not supported
|
||||
|
||||
It's on developing.
|
||||
- `Split-mode:[row]` is not supported.
|
||||
|
||||
## Q&A
|
||||
|
||||
Note: please add prefix **[SYCL]** in issue title, so that we will check it as soon as possible.
|
||||
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
|
||||
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
|
||||
|
||||
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
|
||||
- General compiler error:
|
||||
|
||||
- In Windows, no result, not error.
|
||||
- Remove build folder or try a clean-build.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
|
||||
|
||||
- Meet compile error.
|
||||
Please double-check with `sudo sycl-ls`.
|
||||
|
||||
Remove folder **build** and try again.
|
||||
|
||||
- I can **not** see **[ext_oneapi_level_zero:gpu:0]** afer install GPU driver in Linux.
|
||||
|
||||
Please run **sudo sycl-ls**.
|
||||
|
||||
If you see it in result, please add video/render group to your ID:
|
||||
If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:
|
||||
|
||||
```
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
sudo usermod -aG render $USER
|
||||
sudo usermod -aG video $USER
|
||||
```
|
||||
Otherwise, please double-check the GPU driver installation steps.
|
||||
|
||||
Then **relogin**.
|
||||
|
||||
If you do not see it, please check the installation GPU steps again.
|
||||
### **GitHub contribution**:
|
||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||
|
||||
## Todo
|
||||
|
||||
|
21
README.md
21
README.md
@ -18,12 +18,13 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Hot topics
|
||||
|
||||
- **MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387**
|
||||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||||
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
|
||||
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
|
||||
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
|
||||
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- Support loading sharded model, using `gguf-split` CLI https://github.com/ggerganov/llama.cpp/pull/6187
|
||||
|
||||
----
|
||||
|
||||
@ -115,7 +116,9 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||||
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
||||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
@ -139,6 +142,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
|
||||
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
@ -175,6 +179,10 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||||
- [Msty](https://msty.app) (proprietary)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
|
||||
- [Dot](https://github.com/alexpinel/Dot) (GPL)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
---
|
||||
|
||||
@ -632,15 +640,6 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
- #### Vulkan
|
||||
|
||||
> [!WARNING]
|
||||
>
|
||||
> Vulkan support has been broken in https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
> due to relying on `GGML_OP_GET_ROWS` which is not yet properly supported by the Vulkan backend,
|
||||
> but should be fixed relatively soon (possibly in https://github.com/ggerganov/llama.cpp/pull/6155
|
||||
> (ref: https://github.com/ggerganov/llama.cpp/pull/6122#issuecomment-2015327635)).
|
||||
>
|
||||
> Meanwhile, if you want to use the Vulkan backend, you should use the commit right before the breaking change, https://github.com/ggerganov/llama.cpp/commit/55c1b2a3bbd470e9e2a3a0618b92cf64a885f806
|
||||
|
||||
**With docker**:
|
||||
|
||||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
|
67
SECURITY.md
Normal file
67
SECURITY.md
Normal file
@ -0,0 +1,67 @@
|
||||
# Security Policy
|
||||
|
||||
- [**Using llama.cpp securely**](#using-llamacpp-securely)
|
||||
- [Untrusted models](#untrusted-models)
|
||||
- [Untrusted inputs](#untrusted-inputs)
|
||||
- [Data privacy](#data-privacy)
|
||||
- [Untrusted environments or networks](#untrusted-environments-or-networks)
|
||||
- [Multi-Tenant environments](#multi-tenant-environments)
|
||||
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
|
||||
|
||||
## Using llama.cpp securely
|
||||
|
||||
### Untrusted models
|
||||
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources.
|
||||
|
||||
*Always execute untrusted models within a secure, isolated environment such as a sandbox* (e.g., containers, virtual machines). This helps protect your system from potentially malicious code.
|
||||
|
||||
> [!NOTE]
|
||||
> The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
|
||||
|
||||
### Untrusted inputs
|
||||
|
||||
Some models accept various input formats (text, images, audio, etc.). The libraries converting these inputs have varying security levels, so it's crucial to isolate the model and carefully pre-process inputs to mitigate script injection risks.
|
||||
|
||||
For maximum security when handling untrusted inputs, you may need to employ the following:
|
||||
|
||||
* Sandboxing: Isolate the environment where the inference happens.
|
||||
* Pre-analysis: Check how the model performs by default when exposed to prompt injection (e.g. using [fuzzing for prompt injection](https://github.com/FonduAI/awesome-prompt-injection?tab=readme-ov-file#tools)). This will give you leads on how hard you will have to work on the next topics.
|
||||
* Updates: Keep both LLaMA C++ and your libraries updated with the latest security patches.
|
||||
* Input Sanitation: Before feeding data to the model, sanitize inputs rigorously. This involves techniques such as:
|
||||
* Validation: Enforce strict rules on allowed characters and data types.
|
||||
* Filtering: Remove potentially malicious scripts or code fragments.
|
||||
* Encoding: Convert special characters into safe representations.
|
||||
* Verification: Run tooling that identifies potential script injections (e.g. [models that detect prompt injection attempts](https://python.langchain.com/docs/guides/safety/hugging_face_prompt_injection)).
|
||||
|
||||
### Data privacy
|
||||
|
||||
To protect sensitive data from potential leaks or unauthorized access, it is crucial to sandbox the model execution. This means running the model in a secure, isolated environment, which helps mitigate many attack vectors.
|
||||
|
||||
### Untrusted environments or networks
|
||||
|
||||
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
|
||||
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
|
||||
* Encrypt your data if sending it over the network.
|
||||
|
||||
### Multi-Tenant environments
|
||||
|
||||
If you intend to run multiple models in parallel with shared memory, it is your responsibility to ensure the models do not interact or access each other's data. The primary areas of concern are tenant isolation, resource allocation, model sharing and hardware attacks.
|
||||
|
||||
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
|
||||
|
||||
1. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
|
||||
|
||||
1. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
|
||||
|
||||
1. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
|
||||
|
||||
## Reporting a vulnerability
|
||||
|
||||
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
|
||||
|
||||
<!-- normal version -->
|
||||
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
@ -575,7 +575,7 @@ function gg_run_embd_bge_small {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
|
||||
|
@ -1928,11 +1928,6 @@ struct llama_model * llama_load_model_from_url(
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!curl) {
|
||||
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_download_file(curl, model_url, path_model)) {
|
||||
return NULL;
|
||||
}
|
||||
|
@ -23,7 +23,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
from convert import LlamaHfVocab
|
||||
from convert import LlamaHfVocab, permute
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
@ -326,8 +326,7 @@ class Model(ABC):
|
||||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
@ -514,6 +513,17 @@ class BloomModel(Model):
|
||||
class MPTModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MPT
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_gpt2()
|
||||
except Exception:
|
||||
# Fallback for SEA-LION model
|
||||
self._set_vocab_sentencepiece()
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_pad_token_id(3)
|
||||
self.gguf_writer.add_eos_token_id(1)
|
||||
self.gguf_writer.add_unk_token_id(0)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layers"]
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
@ -527,7 +537,10 @@ class MPTModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||
if self.hparams["attn_config"]["alibi"]:
|
||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||
else:
|
||||
self.gguf_writer.add_max_alibi_bias(0.0)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
|
||||
@ -776,6 +789,148 @@ class BaichuanModel(Model):
|
||||
return weights[r * n_part:r * n_part + r, ...]
|
||||
|
||||
|
||||
@Model.register("XverseForCausalLM")
|
||||
class XverseModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.XVERSE
|
||||
|
||||
def set_vocab(self):
|
||||
assert (self.dir_model / "tokenizer.json").is_file()
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
token_text = reverse_vocab[token_id].encode('utf-8')
|
||||
# replace "\x00" to string with length > 0
|
||||
if token_text == b"\x00":
|
||||
toktype = gguf.TokenType.BYTE # special
|
||||
token_text = f"<{token_text}>".encode('utf-8')
|
||||
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
toktype = gguf.TokenType.BYTE # special
|
||||
elif reverse_vocab[token_id] in added_vocab:
|
||||
if tokenizer.added_tokens_decoder[token_id].special:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
|
||||
tokens.append(token_text)
|
||||
toktypes.append(toktype)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
hf_repo = self.hparams.get("_name_or_path", "")
|
||||
|
||||
ctx_length = 0
|
||||
if "max_sequence_length" in self.hparams:
|
||||
ctx_length = self.hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in self.hparams:
|
||||
ctx_length = self.hparams["max_position_embeddings"]
|
||||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
def write_tensors(self):
|
||||
# Collect tensors from generator object
|
||||
model_kv = dict(self.get_tensors())
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
|
||||
for name, data_torch in model_kv.items():
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
# HF models permute some of the tensors, so we need to undo that
|
||||
if name.endswith(("q_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
|
||||
if name.endswith(("k_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (
|
||||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape)
|
||||
)
|
||||
|
||||
|
||||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||||
class FalconModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON
|
||||
@ -1055,12 +1210,120 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
|
||||
@Model.register("MixtralForCausalLM")
|
||||
class MixtralModel(Model):
|
||||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
try:
|
||||
self. _set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_llama_hf()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
|
||||
# Same as super class, but permuting q_proj, k_proj
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_experts = self.hparams.get("num_local_experts")
|
||||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.numpy()
|
||||
|
||||
if name.endswith("q_proj.weight"):
|
||||
data = permute(data, n_head, n_head)
|
||||
if name.endswith("k_proj.weight"):
|
||||
data = permute(data, n_head, n_kv_head)
|
||||
|
||||
data = data.squeeze()
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
experts[name] = data
|
||||
if len(experts) >= n_experts:
|
||||
# merge the experts into a single 3d tensor
|
||||
for bid in range(block_count):
|
||||
for wid in range(1, 4):
|
||||
full = True
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||||
if ename not in experts:
|
||||
full = False
|
||||
break
|
||||
if not full:
|
||||
continue
|
||||
|
||||
datas = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||||
datas.append(experts[ename])
|
||||
del experts[ename]
|
||||
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
if self.ftype == 1 and data_dtype == np.float32:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
|
||||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# 1d tensors need to be converted to float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts.keys()}")
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
@ -1077,6 +1340,92 @@ class GrokModel(Model):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_name("Grok")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_experts = self.hparams.get("num_local_experts")
|
||||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# process the experts separately
|
||||
if name.find(".moe.") != -1:
|
||||
experts[name] = data
|
||||
if len(experts) >= n_experts:
|
||||
# merge the experts into a single 3d tensor
|
||||
for bid in range(block_count):
|
||||
for wid in ["linear", "linear_1", "linear_v"]:
|
||||
full = True
|
||||
for xid in range(n_experts):
|
||||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||||
if ename not in experts:
|
||||
full = False
|
||||
break
|
||||
if not full:
|
||||
continue
|
||||
|
||||
datas = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||||
datas.append(experts[ename])
|
||||
del experts[ename]
|
||||
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
if self.ftype == 1 and data_dtype == np.float32:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
|
||||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
class MiniCPMModel(Model):
|
||||
|
25
convert.py
25
convert.py
@ -828,6 +828,15 @@ def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
|
||||
return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
|
||||
s = lazy_tensors[0].shape.copy()
|
||||
s.insert(0, len(lazy_tensors))
|
||||
return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
|
||||
|
||||
|
||||
# Functionality that simulates `torch.load` but where individual tensors are
|
||||
# only loaded into memory on demand, not all at once.
|
||||
# PyTorch can't do this natively as of time of writing:
|
||||
@ -1246,6 +1255,22 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
||||
|
||||
tmp = model
|
||||
|
||||
# merge experts into one tensor
|
||||
if params.n_experts and params.n_experts > 0:
|
||||
for i_l in range(params.n_layer):
|
||||
for w in range(1, 4):
|
||||
experts = []
|
||||
for e in range(params.n_experts):
|
||||
if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
|
||||
experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
|
||||
del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
|
||||
elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
|
||||
experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
|
||||
del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
|
||||
else:
|
||||
raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
|
||||
tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
|
||||
|
||||
# HF models permut or pack some of the tensors, so we need to undo that
|
||||
for i in itertools.count():
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||
|
5
examples/gbnf-validator/CMakeLists.txt
Normal file
5
examples/gbnf-validator/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET gbnf-validator)
|
||||
add_executable(${TARGET} gbnf-validator.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common grammar-parser llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
132
examples/gbnf-validator/gbnf-validator.cpp
Normal file
132
examples/gbnf-validator/gbnf-validator.cpp
Normal file
@ -0,0 +1,132 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
|
||||
#include "grammar-parser.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "unicode.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
|
||||
auto decoded = decode_utf8(input_str, {});
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
size_t pos = 0;
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
auto prev_stacks = grammar->stacks;
|
||||
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
|
||||
if (grammar->stacks.empty()) {
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
|
||||
grammar->stacks = prev_stacks;
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
if (stack.empty()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected end of input";
|
||||
return false;
|
||||
}
|
||||
|
||||
static void print_error_message(const std::string & input_str, size_t error_pos, const std::string & error_msg) {
|
||||
fprintf(stdout, "Input string is invalid according to the grammar.\n");
|
||||
fprintf(stdout, "Error: %s at position %zu\n", error_msg.c_str(), error_pos);
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "Input string:\n");
|
||||
fprintf(stdout, "%s", input_str.substr(0, error_pos).c_str());
|
||||
if (error_pos < input_str.size()) {
|
||||
fprintf(stdout, "\033[1;31m%c", input_str[error_pos]);
|
||||
if (error_pos+1 < input_str.size()) {
|
||||
fprintf(stdout, "\033[0;31m%s", input_str.substr(error_pos+1).c_str());
|
||||
}
|
||||
fprintf(stdout, "\033[0m\n");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
if (argc != 3) {
|
||||
fprintf(stdout, "Usage: %s <grammar_filename> <input_filename>\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string grammar_filename = argv[1];
|
||||
const std::string input_filename = argv[2];
|
||||
|
||||
// Read the GBNF grammar file
|
||||
FILE* grammar_file = fopen(grammar_filename.c_str(), "r");
|
||||
if (!grammar_file) {
|
||||
fprintf(stdout, "Failed to open grammar file: %s\n", grammar_filename.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
fseek(grammar_file, 0, SEEK_END);
|
||||
size_t grammar_size = ftell(grammar_file);
|
||||
fseek(grammar_file, 0, SEEK_SET);
|
||||
|
||||
std::string grammar_str(grammar_size, ' ');
|
||||
fread(&grammar_str[0], 1, grammar_size, grammar_file);
|
||||
fclose(grammar_file);
|
||||
|
||||
// Parse the GBNF grammar
|
||||
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Ensure that there is a "root" node.
|
||||
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
|
||||
// Create the LLAMA grammar
|
||||
auto grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
|
||||
// Read the input file
|
||||
FILE* input_file = fopen(input_filename.c_str(), "r");
|
||||
if (!input_file) {
|
||||
fprintf(stdout, "Failed to open input file: %s\n", input_filename.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
fseek(input_file, 0, SEEK_END);
|
||||
size_t input_size = ftell(input_file);
|
||||
fseek(input_file, 0, SEEK_SET);
|
||||
|
||||
std::string input_str(input_size, ' ');
|
||||
fread(&input_str[0], 1, input_size, input_file);
|
||||
fclose(input_file);
|
||||
|
||||
// Validate the input string against the grammar
|
||||
size_t error_pos;
|
||||
std::string error_msg;
|
||||
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
|
||||
|
||||
if (is_valid) {
|
||||
fprintf(stdout, "Input string is valid according to the grammar.\n");
|
||||
} else {
|
||||
print_error_message(input_str, error_pos, error_msg);
|
||||
}
|
||||
|
||||
// Clean up
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
return 0;
|
||||
}
|
@ -28,9 +28,11 @@ enum split_operation : uint8_t {
|
||||
|
||||
struct split_params {
|
||||
split_operation operation = SPLIT_OP_SPLIT;
|
||||
size_t n_bytes_split = 0;
|
||||
int n_split_tensors = 128;
|
||||
std::string input;
|
||||
std::string output;
|
||||
bool dry_run = false;
|
||||
};
|
||||
|
||||
static void split_print_usage(const char * executable) {
|
||||
@ -41,15 +43,36 @@ static void split_print_usage(const char * executable) {
|
||||
printf("Apply a GGUF operation on IN to OUT.");
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" --split split GGUF to multiple GGUF (default)\n");
|
||||
printf(" --split-max-tensors max tensors in each split: default(%d)\n", default_params.n_split_tensors);
|
||||
printf(" --merge merge multiple GGUF to a single GGUF\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" --split split GGUF to multiple GGUF (enabled by default)\n");
|
||||
printf(" --merge merge multiple GGUF to a single GGUF\n");
|
||||
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors);
|
||||
printf(" --split-max-size N(M|G) max size per split\n");
|
||||
printf(" --dry-run only print out a split plan and exit, without writing any new files\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static bool split_params_parse_ex(int argc, const char ** argv, split_params & params) {
|
||||
// return convert string, for example "128M" or "4G" to number of bytes
|
||||
static size_t split_str_to_n_bytes(std::string str) {
|
||||
size_t n_bytes = 0;
|
||||
int n;
|
||||
if (str.back() == 'M') {
|
||||
sscanf(str.c_str(), "%d", &n);
|
||||
n_bytes = n * 1024 * 1024; // megabytes
|
||||
} else if (str.back() == 'G') {
|
||||
sscanf(str.c_str(), "%d", &n);
|
||||
n_bytes = n * 1024 * 1024 * 1024; // gigabytes
|
||||
} else {
|
||||
throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
|
||||
}
|
||||
if (n <= 0) {
|
||||
throw std::invalid_argument("error: size must be a positive value");
|
||||
}
|
||||
return n_bytes;
|
||||
}
|
||||
|
||||
static void split_params_parse_ex(int argc, const char ** argv, split_params & params) {
|
||||
std::string arg;
|
||||
const std::string arg_prefix = "--";
|
||||
bool invalid_param = false;
|
||||
@ -62,6 +85,8 @@ static bool split_params_parse_ex(int argc, const char ** argv, split_params & p
|
||||
}
|
||||
|
||||
bool arg_found = false;
|
||||
bool is_op_set = false;
|
||||
bool is_mode_set = false;
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
split_print_usage(argv[0]);
|
||||
exit(0);
|
||||
@ -71,23 +96,46 @@ static bool split_params_parse_ex(int argc, const char ** argv, split_params & p
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--dry-run") {
|
||||
arg_found = true;
|
||||
params.dry_run = true;
|
||||
}
|
||||
|
||||
if (is_op_set) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
}
|
||||
if (arg == "--merge") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_MERGE;
|
||||
}
|
||||
if (arg == "--split") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_SPLIT;
|
||||
}
|
||||
|
||||
if (is_mode_set) {
|
||||
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
|
||||
}
|
||||
if (arg == "--split-max-tensors") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
params.n_split_tensors = atoi(argv[arg_idx]);
|
||||
}
|
||||
if (arg == "--split-max-size") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
|
||||
}
|
||||
|
||||
if (!arg_found) {
|
||||
throw std::invalid_argument("error: unknown argument: " + arg);
|
||||
@ -99,24 +147,17 @@ static bool split_params_parse_ex(int argc, const char ** argv, split_params & p
|
||||
}
|
||||
|
||||
if (argc - arg_idx < 2) {
|
||||
printf("%s: bad arguments\n", argv[0]);
|
||||
split_print_usage(argv[0]);
|
||||
return false;
|
||||
throw std::invalid_argument("error: bad arguments");
|
||||
}
|
||||
|
||||
params.input = argv[arg_idx++];
|
||||
params.output = argv[arg_idx++];
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
|
||||
bool result = true;
|
||||
try {
|
||||
if (!split_params_parse_ex(argc, argv, params)) {
|
||||
split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
split_params_parse_ex(argc, argv, params);
|
||||
}
|
||||
catch (const std::invalid_argument & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
@ -140,15 +181,11 @@ struct split_strategy {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
const int n_tensors;
|
||||
|
||||
const int n_split;
|
||||
int i_split = 0;
|
||||
// one ctx_out per one output file
|
||||
std::vector<struct gguf_context *> ctx_outs;
|
||||
|
||||
int i_tensor = 0;
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
|
||||
struct gguf_context * ctx_out;
|
||||
std::ofstream fout;
|
||||
// temporary buffer for reading in tensor data
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
split_strategy(const split_params & params,
|
||||
std::ifstream & f_input,
|
||||
@ -158,79 +195,141 @@ struct split_strategy {
|
||||
f_input(f_input),
|
||||
ctx_gguf(ctx_gguf),
|
||||
ctx_meta(ctx_meta),
|
||||
n_tensors(gguf_get_n_tensors(ctx_gguf)),
|
||||
n_split(std::ceil(1. * n_tensors / params.n_split_tensors)) {
|
||||
n_tensors(gguf_get_n_tensors(ctx_gguf)) {
|
||||
|
||||
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
|
||||
int i_split = -1;
|
||||
struct gguf_context * ctx_out = NULL;
|
||||
auto new_ctx_out = [&]() {
|
||||
i_split++;
|
||||
if (ctx_out != NULL) {
|
||||
if (gguf_get_n_tensors(ctx_out) == 0) {
|
||||
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
ctx_outs.push_back(ctx_out);
|
||||
}
|
||||
ctx_out = gguf_init_empty();
|
||||
// Save all metadata in first split only
|
||||
if (i_split == 0) {
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
}
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder
|
||||
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
|
||||
};
|
||||
|
||||
// initialize ctx_out for the first split
|
||||
new_ctx_out();
|
||||
|
||||
// process tensors one by one
|
||||
size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
// calculate the "imaginary" size = the current size + next tensor size
|
||||
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
|
||||
size_t next_tensors_size = curr_tensors_size + n_bytes;
|
||||
if (should_split(i, next_tensors_size)) {
|
||||
new_ctx_out();
|
||||
curr_tensors_size = n_bytes;
|
||||
} else {
|
||||
curr_tensors_size = next_tensors_size;
|
||||
}
|
||||
gguf_add_tensor(ctx_out, t);
|
||||
}
|
||||
|
||||
bool should_split() const {
|
||||
return i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
|
||||
// push the last ctx_out
|
||||
ctx_outs.push_back(ctx_out);
|
||||
|
||||
// set the correct n_split for all ctx_out
|
||||
for (auto & ctx : ctx_outs) {
|
||||
gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size());
|
||||
}
|
||||
}
|
||||
|
||||
void split_start() {
|
||||
ctx_out = gguf_init_empty();
|
||||
|
||||
// Save all metadata in first split only
|
||||
if (i_split == 0) {
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
~split_strategy() {
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, n_split);
|
||||
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
|
||||
|
||||
// populate the original tensors, so we get an initial metadata
|
||||
for (int i = i_split * params.n_split_tensors; i < n_tensors && i < (i_split + 1) * params.n_split_tensors; ++i) {
|
||||
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
gguf_add_tensor(ctx_out, meta);
|
||||
}
|
||||
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
|
||||
|
||||
fprintf(stderr, "%s: %s ...", __func__, split_path);
|
||||
fout = std::ofstream(split_path, std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
|
||||
// placeholder for the meta data
|
||||
::zeros(fout, meta_size);
|
||||
|
||||
i_split++;
|
||||
}
|
||||
|
||||
void next_tensor() {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
|
||||
if (read_data.size() < n_bytes) {
|
||||
read_data.resize(n_bytes);
|
||||
bool should_split(int i_tensor, size_t next_size) {
|
||||
if (params.n_bytes_split > 0) {
|
||||
// split by max size per file
|
||||
return next_size > params.n_bytes_split;
|
||||
} else {
|
||||
// split by number of tensors per file
|
||||
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
|
||||
}
|
||||
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
t->data = read_data.data();
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)t->data, n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
|
||||
i_tensor++;
|
||||
}
|
||||
|
||||
void split_end() {
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
void print_info() {
|
||||
printf("n_split: %ld\n", ctx_outs.size());
|
||||
int i_split = 0;
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
// re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
|
||||
size_t total_size = gguf_get_meta_size(ctx_out);
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i));
|
||||
total_size += ggml_nbytes(t);
|
||||
}
|
||||
total_size = total_size / 1024 / 1024; // convert to megabytes
|
||||
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
|
||||
i_split++;
|
||||
}
|
||||
}
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
void write() {
|
||||
int i_split = 0;
|
||||
int n_split = ctx_outs.size();
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
// construct file path
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
// open the output file
|
||||
printf("Writing file %s ... ", split_path);
|
||||
fflush(stdout);
|
||||
std::ofstream fout = std::ofstream(split_path, std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
// write metadata
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
// write tensors
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
|
||||
// read tensor meta and prepare buffer
|
||||
const char * t_name = gguf_get_tensor_name(ctx_out, i);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
read_buf.resize(n_bytes);
|
||||
|
||||
// calculate offset
|
||||
auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
|
||||
|
||||
// copy tensor from input to output file
|
||||
copy_file_to_file(f_input, fout, offset, n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
printf("done\n");
|
||||
// close the file
|
||||
fout.close();
|
||||
i_split++;
|
||||
}
|
||||
}
|
||||
|
||||
void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) {
|
||||
// TODO: detect OS and use copy_file_range() here for better performance
|
||||
if (read_buf.size() < len) {
|
||||
read_buf.resize(len);
|
||||
}
|
||||
f_in.seekg(in_offset);
|
||||
f_in.read((char *)read_buf.data(), len);
|
||||
f_out.write((const char *)read_buf.data(), len);
|
||||
}
|
||||
};
|
||||
|
||||
@ -254,32 +353,22 @@ static void gguf_split(const split_params & split_params) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// prepare the strategy
|
||||
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
|
||||
int n_split = strategy.ctx_outs.size();
|
||||
strategy.print_info();
|
||||
|
||||
char first_split_path[PATH_MAX] = {0};
|
||||
llama_split_path(first_split_path, sizeof(first_split_path),
|
||||
split_params.output.c_str(), strategy.i_split, strategy.n_split);
|
||||
fprintf(stderr, "%s: %s -> %s (%d tensors per file)\n",
|
||||
__func__, split_params.input.c_str(),
|
||||
first_split_path,
|
||||
split_params.n_split_tensors);
|
||||
|
||||
strategy.split_start();
|
||||
|
||||
while (strategy.i_tensor < strategy.n_tensors) {
|
||||
strategy.next_tensor();
|
||||
if (strategy.should_split()) {
|
||||
strategy.split_end();
|
||||
strategy.split_start();
|
||||
}
|
||||
if (!split_params.dry_run) {
|
||||
// write all output splits
|
||||
strategy.write();
|
||||
}
|
||||
strategy.split_end();
|
||||
|
||||
// done, clean up
|
||||
gguf_free(ctx_gguf);
|
||||
f_input.close();
|
||||
|
||||
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
|
||||
__func__, strategy.n_split, strategy.n_tensors);
|
||||
__func__, n_split, strategy.n_tensors);
|
||||
}
|
||||
|
||||
static void gguf_merge(const split_params & split_params) {
|
||||
@ -448,10 +537,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
if (argc < 3) {
|
||||
split_print_usage(argv[0]);
|
||||
}
|
||||
|
||||
split_params params;
|
||||
split_params_parse(argc, argv, params);
|
||||
|
||||
|
@ -98,35 +98,38 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
|
||||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
const int idx = ((int32_t *) t->op_params)[0];
|
||||
const int n_as = ((int32_t *) t->op_params)[1];
|
||||
const ggml_tensor * ids = t->src[2];
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
// the top-k selected expert ids are stored in the src0 tensor
|
||||
// for simplicity, always copy src0 to host, because it is small
|
||||
// take into account that src0 is not contiguous!
|
||||
GGML_ASSERT(src0->ne[1] == src1->ne[1]);
|
||||
GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int)));
|
||||
m_ids.resize(ggml_nbytes(src0)/sizeof(int));
|
||||
ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0));
|
||||
// the top-k selected expert ids are stored in the ids tensor
|
||||
// for simplicity, always copy ids to host, because it is small
|
||||
// take into account that ids is not contiguous!
|
||||
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
|
||||
GGML_ASSERT(n_as*ggml_nrows(ids)*sizeof(int) == GGML_PAD(ggml_nbytes(ids), n_as*sizeof(int)));
|
||||
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
|
||||
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
|
||||
|
||||
auto & e = m_stats[wname];
|
||||
|
||||
++e.ncall;
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
// using the following line, we can correct for that if needed by replacing the line above with:
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
|
||||
// loop over all possible experts, regardless if they are used or not in the batch
|
||||
// this is necessary to guarantee equal number of "ncall" for each tensor
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
src0 = t->src[2 + ex];
|
||||
wname = filter_tensor_name(src0->name);
|
||||
auto& e = m_stats[wname];
|
||||
size_t e_start = ex*src1->ne[0];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
e.values.resize(src1->ne[0]*n_as, 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
// using the following line, we can correct for that if needed
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
@ -136,7 +139,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
if (excur != ex) continue;
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[j] += x[j]*x[j];
|
||||
e.values[e_start + j] += x[j]*x[j];
|
||||
}
|
||||
}
|
||||
if (e.ncall > m_last_call) {
|
||||
|
@ -116,13 +116,13 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char *)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
for (int i = 0; i < n_entries; ++i) {
|
||||
int len; in.read((char *)&len, sizeof(len));
|
||||
@ -130,11 +130,11 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
std::string name{name_as_vec.data()};
|
||||
auto & e = imatrix_data[std::move(name)];
|
||||
auto & e = imatrix_data[name];
|
||||
int ncall;
|
||||
in.read((char *)&ncall, sizeof(ncall));
|
||||
int nval;
|
||||
@ -142,18 +142,22 @@ static void load_imatrix(const std::string & imatrix_file, std::unordered_map<st
|
||||
if (in.fail() || nval < 1) {
|
||||
printf("%s: failed reading number of values for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
e.resize(nval);
|
||||
in.read((char *)e.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading data for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
if (ncall > 0) {
|
||||
for (auto& v : e) v /= ncall;
|
||||
}
|
||||
|
||||
if (getenv("LLAMA_TRACE")) {
|
||||
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
|
||||
}
|
||||
|
@ -16,52 +16,50 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching, this parameter is used only if one token is to be processed on CPU backend.
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching. This parameter is used only if one token is to be processed on CPU backend.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
|
||||
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
|
||||
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (default: unused).
|
||||
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository (default: unused).
|
||||
- `-hff FILE, --hf-file FILE`: Hugging Face model file (default: unused).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file. Default: unused
|
||||
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository. Default: unused
|
||||
- `-hff FILE, --hf-file FILE`: Hugging Face model file. Default: unused
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is `512`, but LLaMA models were built with a context of `2048`, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of `4096`.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`.
|
||||
- `-ub N`, `--ubatch-size N`: physical maximum batch size. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs, this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default, GPU `0` is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs, this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default, the data is split in proportion to VRAM, but this may not be optimal for performance.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`
|
||||
- `-ub N`, `--ubatch-size N`: Physical maximum batch size. Default: `512`
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that help on some NUMA systems
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
||||
- `--numa distribute`: Spread execution evenly over all nodes
|
||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||
- `--numa numactl`: Use the CPU map provided by numactl
|
||||
if run without this previously, it is recommended to drop the system page cache before using this
|
||||
see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system
|
||||
page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default: disabled)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`
|
||||
- `--port`: Set the port to listen. Default: `8080`
|
||||
- `--path`: Path from which to serve static files. Default: disabled
|
||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||
- `--embedding`: Enable embedding extraction. Default: disabled
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`
|
||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend. Used together with group attention width `--grp-attn-w`. Default: `1`, which is disabled.
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend. Used together with group attention factor `--grp-attn-n`. Default: `512`
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict. Default: `-1`
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, not to `llama.log`. default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint. Default: disabled
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
|
||||
|
||||
**If compiled with `LLAMA_SERVER_SSL=ON`**
|
||||
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
|
||||
@ -69,7 +67,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
`server` is built alongside everything else from the root of the project
|
||||
|
||||
- Using `make`:
|
||||
|
||||
@ -85,7 +83,7 @@ server is build alongside everything else from the root of the project
|
||||
|
||||
## Build with SSL
|
||||
|
||||
server can also be built with SSL support using OpenSSL 3
|
||||
`server` can also be built with SSL support using OpenSSL 3
|
||||
|
||||
- Using `make`:
|
||||
|
||||
@ -135,7 +133,7 @@ docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/
|
||||
|
||||
## Testing with CURL
|
||||
|
||||
Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.
|
||||
Using [curl](https://curl.se/). On Windows, `curl.exe` should be available in the base OS.
|
||||
|
||||
```sh
|
||||
curl --request POST \
|
||||
@ -159,7 +157,7 @@ mkdir llama-client
|
||||
cd llama-client
|
||||
```
|
||||
|
||||
Create a index.js file and put inside this:
|
||||
Create a index.js file and put this inside:
|
||||
|
||||
```javascript
|
||||
const prompt = `Building a website can be done in 10 simple steps:`;
|
||||
@ -190,8 +188,8 @@ node index.js
|
||||
- 503 -> `{"status": "loading model"}` if the model is still being loaded.
|
||||
- 500 -> `{"status": "error"}` if the model failed to load.
|
||||
- 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available.
|
||||
|
||||
If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set.
|
||||
|
||||
@ -205,75 +203,75 @@ node index.js
|
||||
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
|
||||
- The system prompt is empty
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
|
||||
|
||||
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` (default: 0.0, 0.0 = disabled).
|
||||
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` Default: `0.0`, which is disabled.
|
||||
|
||||
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
||||
`dynatemp_exponent`: Dynamic temperature exponent. Default: `1.0`
|
||||
|
||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||
`top_k`: Limit the next token selection to the K most probable tokens. Default: `40`
|
||||
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95`
|
||||
|
||||
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token (default: 0.05).
|
||||
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05`
|
||||
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
|
||||
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
|
||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the prompt.
|
||||
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
|
||||
|
||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||
|
||||
`stop`: Specify a JSON array of stopping strings.
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
|
||||
|
||||
`tfs_z`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
|
||||
`tfs_z`: Enable tail free sampling with parameter z. Default: `1.0`, which is disabled.
|
||||
|
||||
`typical_p`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled).
|
||||
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
|
||||
|
||||
`repeat_penalty`: Control the repetition of token sequences in the generated text (default: 1.1).
|
||||
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
|
||||
|
||||
`repeat_last_n`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
|
||||
`repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size.
|
||||
|
||||
`penalize_nl`: Penalize newline tokens when applying the repeat penalty (default: true).
|
||||
`penalize_nl`: Penalize newline tokens when applying the repeat penalty. Default: `true`
|
||||
|
||||
`presence_penalty`: Repeat alpha presence penalty (default: 0.0, 0.0 = disabled).
|
||||
`presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled);
|
||||
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens (default: `null` = use the original `prompt`).
|
||||
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.
|
||||
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
|
||||
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0).
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
|
||||
|
||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta. Default: `0.1`
|
||||
|
||||
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
|
||||
`grammar`: Set grammar for grammar-based sampling. Default: no grammar
|
||||
|
||||
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||
`seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed.
|
||||
|
||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
|
||||
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. (default: []).
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
|
||||
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
|
||||
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum (default: 0)
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. Default: `false`
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. (default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values)
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
|
||||
|
||||
### Result JSON
|
||||
|
||||
- Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
- Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
|
||||
|
||||
@ -287,7 +285,7 @@ node index.js
|
||||
},
|
||||
{
|
||||
"prob": float,
|
||||
"tok_str": "<second most likely tonen>"
|
||||
"tok_str": "<second most likely token>"
|
||||
},
|
||||
...
|
||||
]
|
||||
@ -357,14 +355,14 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only model with [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, ChatML template will be used.
|
||||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such are `mirostat` are supported.
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
|
||||
|
||||
*Examples:*
|
||||
|
||||
@ -514,16 +512,16 @@ Available metrics:
|
||||
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
|
||||
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
|
||||
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. `1` means 100 percent usage.
|
||||
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
|
||||
- `llamacpp:requests_processing`: Number of request processing.
|
||||
- `llamacpp:requests_deferred`: Number of request deferred.
|
||||
- `llamacpp:requests_processing`: Number of requests processing.
|
||||
- `llamacpp:requests_deferred`: Number of requests deferred.
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
|
||||
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt` to achieve that. This only needs to be done once to establish it.
|
||||
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt`. This only needs to be used once.
|
||||
|
||||
`prompt`: Specify a context that you want all connecting clients to respect.
|
||||
|
||||
@ -562,11 +560,11 @@ bash chat.sh
|
||||
|
||||
### OAI-like API
|
||||
|
||||
The HTTP server supports OAI-like API: https://github.com/openai/openai-openapi
|
||||
The HTTP `server` supports an OAI-like API: https://github.com/openai/openai-openapi
|
||||
|
||||
### API errors
|
||||
|
||||
Server returns error in the same format as OAI: https://github.com/openai/openai-openapi
|
||||
`server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
|
||||
|
||||
Example of an error:
|
||||
|
||||
|
@ -16,6 +16,7 @@ import matplotlib
|
||||
import matplotlib.dates
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
from statistics import mean
|
||||
|
||||
|
||||
def main(args_in: list[str] | None = None) -> None:
|
||||
@ -109,6 +110,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
|
||||
# Prometheus
|
||||
end_time = time.time()
|
||||
prometheus_metrics = {}
|
||||
if is_server_listening("0.0.0.0", 9090):
|
||||
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
|
||||
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
|
||||
@ -127,6 +129,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
values = metric_data['data']['result'][0]['values']
|
||||
timestamps, metric_values = zip(*values)
|
||||
metric_values = [float(value) for value in metric_values]
|
||||
prometheus_metrics[metric] = metric_values
|
||||
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
|
||||
plt.figure(figsize=(16, 10), dpi=80)
|
||||
plt.plot(timestamps_dt, metric_values, label=metric)
|
||||
@ -176,17 +179,20 @@ xychart-beta
|
||||
|
||||
# 140 chars max for commit status description
|
||||
bench_results = {
|
||||
"i": iterations,
|
||||
"req": {
|
||||
"p90": data['metrics']["http_req_duration"]["p(90)"],
|
||||
"avg": data['metrics']["http_req_duration"]["avg"],
|
||||
"p90": round(data['metrics']["http_req_duration"]["p(90)"], 2),
|
||||
"avg": round(data['metrics']["http_req_duration"]["avg"], 2),
|
||||
},
|
||||
"pp": {
|
||||
"p90": data['metrics']["llamacpp_prompt_tokens"]["p(90)"],
|
||||
"avg": data['metrics']["llamacpp_prompt_tokens"]["avg"],
|
||||
"p90": round(data['metrics']["llamacpp_prompt_tokens"]["p(90)"], 2),
|
||||
"avg": round(data['metrics']["llamacpp_prompt_tokens"]["avg"], 2),
|
||||
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
|
||||
},
|
||||
"tg": {
|
||||
"p90": data['metrics']["llamacpp_tokens_second"]["p(90)"],
|
||||
"avg": data['metrics']["llamacpp_tokens_second"]["avg"],
|
||||
"p90": round(data['metrics']["llamacpp_tokens_second"]["p(90)"], 2),
|
||||
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
|
||||
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
|
||||
},
|
||||
}
|
||||
with open("results.github.env", 'a') as github_env:
|
||||
|
@ -87,6 +87,7 @@ export default function () {
|
||||
],
|
||||
"model": model,
|
||||
"stream": false,
|
||||
"seed": 42,
|
||||
"max_tokens": max_tokens
|
||||
}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -222,6 +222,7 @@
|
||||
temperature: 0.7,
|
||||
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
|
||||
repeat_penalty: 1.18, // 1.0 = disabled
|
||||
penalize_nl: false,
|
||||
top_k: 40, // <= 0 to use vocab size
|
||||
top_p: 0.95, // 1.0 = disabled
|
||||
min_p: 0.05, // 0 = disabled
|
||||
@ -627,6 +628,7 @@
|
||||
const updateParams = (el) => params.value = { ...params.value, [el.target.name]: el.target.value }
|
||||
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
||||
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
||||
const updateParamsBool = (el) => params.value = { ...params.value, [el.target.name]: el.target.checked }
|
||||
|
||||
const grammarJsonSchemaPropOrder = signal('')
|
||||
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
|
||||
@ -670,6 +672,15 @@
|
||||
`
|
||||
};
|
||||
|
||||
const BoolField = ({ label, name, value }) => {
|
||||
return html`
|
||||
<div>
|
||||
<label for="${name}">${label}</label>
|
||||
<input type="checkbox" id="${name}" name="${name}" checked="${value}" onclick=${updateParamsBool} />
|
||||
</div>
|
||||
`
|
||||
};
|
||||
|
||||
const userTemplateReset = (e) => {
|
||||
e.preventDefault();
|
||||
userTemplateResetToDefaultAndApply()
|
||||
@ -769,6 +780,7 @@
|
||||
${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
|
||||
${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
|
||||
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
|
||||
${BoolField({ label: "Penalize repetition of newlines", name: "penalize_nl", value: params.value.penalize_nl })}
|
||||
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
|
||||
${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })}
|
||||
${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })}
|
||||
|
@ -2189,8 +2189,6 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
|
||||
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_supports_mlock()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
@ -2213,6 +2211,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
printf(" -nkvo, --no-kv-offload\n");
|
||||
printf(" disable KV offload\n");
|
||||
}
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
@ -2498,6 +2498,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
"See main README.md for information on enabling GPU BLAS support",
|
||||
{{"n_gpu_layers", params.n_gpu_layers}});
|
||||
}
|
||||
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
||||
params.no_kv_offload = true;
|
||||
} else if (arg == "--split-mode" || arg == "-sm") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -49,12 +49,23 @@ extern bool server_log_json;
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra);
|
||||
|
||||
template <typename T>
|
||||
static T json_value(const json &body, const std::string &key, const T &default_value) {
|
||||
// Fallback null to default value
|
||||
return body.contains(key) && !body.at(key).is_null()
|
||||
? body.value(key, default_value)
|
||||
: default_value;
|
||||
if (body.contains(key) && !body.at(key).is_null()){
|
||||
try {
|
||||
return body.value(key, default_value);
|
||||
}
|
||||
catch (nlohmann::json_abi_v3_11_3::detail::type_error const&){
|
||||
std::string message = "Wrong type supplied for parameter '" + key + "'. Expected '" + typeid(default_value).name() + "', using default value.";
|
||||
server_log("WARN", __func__, __LINE__, message.c_str(), body);
|
||||
return default_value;
|
||||
}
|
||||
} else {
|
||||
return default_value;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
|
||||
|
6
flake.lock
generated
6
flake.lock
generated
@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1711163522,
|
||||
"narHash": "sha256-YN/Ciidm+A0fmJPWlHBGvVkcarYWSC+s3NTPk/P+q3c=",
|
||||
"lastModified": 1711703276,
|
||||
"narHash": "sha256-iMUFArF0WCatKK6RzfUJknjem0H9m4KgorO/p3Dopkk=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "44d0940ea560dee511026a53f0e2e2cde489b4d4",
|
||||
"rev": "d8fe5e6c92d0d190646fb9f1056741a229980089",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
@ -705,8 +705,13 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
if (leaf->view_src || leaf->data) {
|
||||
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
||||
galloc->leaf_allocs[i].leaf.size_max = 0;
|
||||
} else {
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
}
|
||||
|
||||
// reallocate buffers if needed
|
||||
|
@ -447,10 +447,11 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_
|
||||
|
||||
#define GGML_COMMON_IMPL
|
||||
#elif defined(GGML_COMMON_IMPL_SYCL)
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#define GGML_TABLE_BEGIN(type, name, size) static dpct::global_memory<const type, 1> name(sycl::range<1>(size), {
|
||||
#define GGML_TABLE_END() });
|
||||
#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = {
|
||||
#define GGML_TABLE_END() };
|
||||
|
||||
#define GGML_COMMON_IMPL
|
||||
#endif
|
||||
|
214
ggml-cuda.cu
214
ggml-cuda.cu
@ -401,10 +401,8 @@ GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||||
if (tensor->view_src != NULL) {
|
||||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
tensor->backend = tensor->view_src->backend;
|
||||
tensor->extra = tensor->view_src->extra;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1962,227 +1960,49 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
template<typename ... Srcs>
|
||||
static __global__ void k_compute_batched_ptrs_id(
|
||||
const void ** ptrs_src, void ** ptrs_dst,
|
||||
int ne12, int ne13,
|
||||
int ne23,
|
||||
int nb02, int nb03,
|
||||
int nb12, int nb13,
|
||||
int nb2, int nb3,
|
||||
int r2, int r3,
|
||||
ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
|
||||
const half * src1_f16, half * dst_f16,
|
||||
const int32_t * ids, const int id,
|
||||
Srcs... src0s) {
|
||||
|
||||
int i = ids[id];
|
||||
|
||||
half * src0_f16;
|
||||
const void * srcs_ar[] = { (const half *) src0s... };
|
||||
if (src0_type == GGML_TYPE_F16) {
|
||||
src0_f16 = (half *) srcs_ar[i];
|
||||
} else {
|
||||
src0_f16 = src0_as_f16;
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0) {
|
||||
const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
|
||||
to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
|
||||
}
|
||||
}
|
||||
|
||||
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i13 >= ne13 || i12 >= ne12) {
|
||||
return;
|
||||
}
|
||||
|
||||
int i03 = i13 / r3;
|
||||
int i02 = i12 / r2;
|
||||
|
||||
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
|
||||
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
|
||||
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const struct ggml_tensor * src00 = dst->src[2];
|
||||
|
||||
const int id = dst->op_params[0];
|
||||
|
||||
GGML_ASSERT(!ggml_is_transposed(src00));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
|
||||
const int64_t ne01 = src00->ne[1];
|
||||
const int64_t ne02 = src00->ne[2];
|
||||
const int64_t ne03 = src00->ne[3];
|
||||
|
||||
//const int64_t nb01 = src00->nb[1];
|
||||
const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
|
||||
const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
//const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
|
||||
const int64_t ne1 = ggml_nelements(src1);
|
||||
const int64_t ne = ggml_nelements(dst);
|
||||
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
|
||||
|
||||
//ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
//void * src0_ddq = src0_extra->data_device[g_main_device];
|
||||
//half * src0_as_f16 = (half *) src0_ddq;
|
||||
|
||||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
|
||||
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
|
||||
|
||||
// convert src1 to fp16
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
|
||||
size_t src1_as = 0;
|
||||
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
|
||||
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
// use cublasGemmBatchedEx
|
||||
const int ne23 = ne12*ne13;
|
||||
|
||||
const void ** ptrs_src = nullptr;
|
||||
void ** ptrs_dst = nullptr;
|
||||
|
||||
size_t ptrs_src_s = 0;
|
||||
size_t ptrs_dst_s = 0;
|
||||
|
||||
ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
|
||||
ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
|
||||
|
||||
int64_t src0_ne = ggml_nelements(src00);
|
||||
half * src0_as_f16 = nullptr;
|
||||
size_t src0_as = 0;
|
||||
if (src00->type != GGML_TYPE_F16) {
|
||||
src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
|
||||
}
|
||||
|
||||
static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
|
||||
dim3 block_dims(ne13, ne12);
|
||||
k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
|
||||
ptrs_src, ptrs_dst,
|
||||
ne12, ne13,
|
||||
ne23,
|
||||
ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
|
||||
nb12, nb13,
|
||||
dst->nb[2], dst->nb[3],
|
||||
r2, r3,
|
||||
src00->type, src0_as_f16, src0_ne,
|
||||
src1_as_f16, dst_f16,
|
||||
(const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
|
||||
dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
|
||||
dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
|
||||
dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
|
||||
dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
&alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
|
||||
(const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
|
||||
&beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
|
||||
ne23,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
if (src0_as != 0) {
|
||||
ggml_cuda_pool_free(src0_as_f16, src0_as);
|
||||
}
|
||||
if (ptrs_src_s != 0) {
|
||||
ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
|
||||
}
|
||||
if (ptrs_dst_s != 0) {
|
||||
ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
|
||||
}
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
|
||||
|
||||
ggml_cuda_pool_free(src1_as_f16, src1_as);
|
||||
ggml_cuda_pool_free(dst_f16, dst_as);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
#if 0
|
||||
ggml_cuda_mul_mat_id_cublas(dst);
|
||||
// TODO: mmq/mmv support
|
||||
#endif
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * ids = dst->src[2];
|
||||
|
||||
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const size_t nb11 = src1->nb[1];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int32_t id = ((int32_t *) dst->op_params)[0];
|
||||
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
||||
const int32_t n_as = src0->ne[2];
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
const char * ids_dev = (const char *) ids->data;
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[3] = src0->nb[2];
|
||||
|
||||
if (src1->ne[1] == 1) {
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
src0_row.data = src0_original + row_id*src0->nb[2];
|
||||
src1_row.data = src1_original + i01*src1->nb[1];
|
||||
dst_row.data = dst_original + i01*dst->nb[1];
|
||||
|
||||
ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
||||
@ -2192,8 +2012,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
dst_row.data = dst_contiguous.get();
|
||||
|
||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
int64_t num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
@ -2213,6 +2031,8 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
continue;
|
||||
}
|
||||
|
||||
src0_row.data = src0_original + row_id*src0->nb[2];
|
||||
|
||||
src1_row.ne[1] = num_src1_rows;
|
||||
dst_row.ne[1] = num_src1_rows;
|
||||
|
||||
@ -2224,7 +2044,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
dst_row.nb[2] = num_src1_rows*nb1;
|
||||
dst_row.nb[3] = num_src1_rows*nb1;
|
||||
|
||||
ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
|
||||
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||||
|
||||
num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
@ -2389,7 +2209,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess) {
|
||||
fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
|
||||
GGML_ASSERT(false);
|
||||
CUDA_CHECK(err);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -8,32 +8,41 @@ static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||
}
|
||||
|
||||
template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
|
||||
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
|
||||
// bitonic sort
|
||||
int col = threadIdx.x;
|
||||
int row = blockIdx.y;
|
||||
|
||||
if (col >= ncols) return;
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float * x_row = x + row * ncols;
|
||||
int * dst_row = dst + row * ncols;
|
||||
extern __shared__ int dst_row[];
|
||||
|
||||
// initialize indices
|
||||
if (col < ncols) {
|
||||
dst_row[col] = col;
|
||||
}
|
||||
dst_row[col] = col;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k = 2; k <= ncols; k *= 2) {
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
@ -41,18 +50,35 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
|
||||
static int next_power_of_2(int x) {
|
||||
int n = 1;
|
||||
while (n < x) {
|
||||
n *= 2;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
GGML_ASSERT((ncols & (ncols - 1)) == 0);
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
const dim3 block_dims(ncols, 1, 1);
|
||||
const dim3 block_dims(ncols_pad, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -1,7 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "../ggml.h"
|
||||
#include "../ggml-cuda.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
@ -11,7 +12,7 @@
|
||||
#define GGML_COMMON_DECL_CUDA
|
||||
#define GGML_COMMON_IMPL_CUDA
|
||||
#endif
|
||||
#include "../ggml-common.h"
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <array>
|
||||
|
@ -2,14 +2,6 @@
|
||||
#include "dequantize.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
#ifndef GGML_CUDA_DMMV_X
|
||||
#define GGML_CUDA_DMMV_X 32
|
||||
#endif
|
||||
#ifndef GGML_CUDA_MMV_Y
|
||||
#define GGML_CUDA_MMV_Y 1
|
||||
#endif
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
#else
|
||||
|
@ -1,5 +1,16 @@
|
||||
#include "common.cuh"
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
|
||||
// TODO: remove this?
|
||||
#ifndef GGML_CUDA_DMMV_X
|
||||
#define GGML_CUDA_DMMV_X 32
|
||||
#endif
|
||||
|
||||
#ifndef GGML_CUDA_MMV_Y
|
||||
#define GGML_CUDA_MMV_Y 1
|
||||
#endif
|
||||
|
||||
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
|
209
ggml-metal.m
209
ggml-metal.m
@ -1685,37 +1685,31 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
{
|
||||
//GGML_ASSERT(ne00 == ne10);
|
||||
//GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
GGML_ASSERT(src0t == GGML_TYPE_I32);
|
||||
|
||||
const int n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
// TODO: make this more general
|
||||
GGML_ASSERT(n_as <= 8);
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
// max size of the src1ids array in the kernel shared buffer
|
||||
GGML_ASSERT(ne11 <= 4096);
|
||||
|
||||
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
||||
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
||||
const int64_t ne22 = src2 ? src2->ne[2] : 0;
|
||||
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
||||
// src2 = ids
|
||||
const int64_t ne20 = src2->ne[0]; GGML_UNUSED(ne20);
|
||||
const int64_t ne21 = src2->ne[1];
|
||||
const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22);
|
||||
const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23);
|
||||
|
||||
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||
const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
|
||||
const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2->nb[1];
|
||||
const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22);
|
||||
const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23);
|
||||
|
||||
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
|
||||
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
||||
|
||||
GGML_ASSERT(!ggml_is_transposed(src2));
|
||||
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
||||
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
|
||||
const uint r2 = ne12/ne22;
|
||||
const uint r3 = ne13/ne23;
|
||||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = n_as;
|
||||
@ -1723,7 +1717,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
const int idx = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
// batch size
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
GGML_ASSERT(ne21 == ne11); // ?
|
||||
GGML_ASSERT(ne12 == 1 && ne13 == 1); // no broadcasting
|
||||
const uint r2 = 1;
|
||||
const uint r3 = 1;
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
@ -1732,7 +1729,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
// indirect matrix multiplication
|
||||
// !!!
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne20 % 32 == 0 && ne20 >= 64 &&
|
||||
ne00 % 32 == 0 && ne00 >= 64 &&
|
||||
ne11 > ne11_mm_min) {
|
||||
|
||||
// some Metal matrix data types require aligned pointers
|
||||
@ -1745,7 +1742,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (src2->type) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break;
|
||||
@ -1774,36 +1771,27 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
|
||||
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
|
||||
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
|
||||
}
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:9];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:10];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:13];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:14];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:15];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:16];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:19];
|
||||
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + 2*ne11, 16) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
@ -1813,7 +1801,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src2t) {
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
@ -1947,8 +1935,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
}
|
||||
};
|
||||
|
||||
if (ggml_is_quantized(src2t)) {
|
||||
GGML_ASSERT(ne20 >= nth0*nth1);
|
||||
if (ggml_is_quantized(src0t)) {
|
||||
GGML_ASSERT(ne00 >= nth0*nth1);
|
||||
}
|
||||
|
||||
const int64_t _ne1 = 1; // kernels needs a reference in constant memory
|
||||
@ -1957,75 +1945,66 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
|
||||
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:20];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
// NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8
|
||||
struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:5];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:6];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:7];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:8];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:12];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:19];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:20];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:21];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:22];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:23];
|
||||
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
||||
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
||||
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || src2t == GGML_TYPE_Q5_0 ||
|
||||
src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || src2t == GGML_TYPE_Q2_K ||
|
||||
src2t == GGML_TYPE_IQ1_S || src2t == GGML_TYPE_IQ1_M || src2t == GGML_TYPE_IQ2_S) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
||||
const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
|
||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS || src2t == GGML_TYPE_IQ3_S) {
|
||||
const int mem_size = src2t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
|
||||
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ4_NL || src2t == GGML_TYPE_IQ4_XS) {
|
||||
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
||||
const int mem_size = 32*sizeof(float);
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q3_K) {
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
else if (src0t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
const int64_t ny = (_ne1 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne21*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@ -2432,6 +2411,16 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
// bitonic sort requires the number of elements to be power of 2
|
||||
int64_t ne00_padded = 1;
|
||||
while (ne00_padded < ne00) {
|
||||
ne00_padded *= 2;
|
||||
}
|
||||
|
||||
// Metal kernels require the buffer size to be multiple of 16 bytes
|
||||
// https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
|
||||
const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (order) {
|
||||
@ -2441,11 +2430,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
{
|
||||
|
410
ggml-metal.metal
410
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
152
ggml-sycl.cpp
152
ggml-sycl.cpp
@ -8079,7 +8079,7 @@ template <bool need_check> static void
|
||||
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
|
||||
static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
|
||||
const sycl::nd_item<3> &item_ct1,
|
||||
const uint32_t *iq3xxs_grid_ptr, const uint64_t *ksigns64_ptr) {
|
||||
const uint32_t *iq3xxs_grid_ptr=nullptr, const uint64_t *ksigns64_ptr=nullptr) {
|
||||
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
||||
item_ct1.get_local_id(1);
|
||||
|
||||
@ -9956,17 +9956,14 @@ static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
iq2xxs_grid.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq2xxs_grid_ptr_ct1 = iq2xxs_grid.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq2xxs_grid_ptr_ct1 = &iq2xxs_grid[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
@ -9985,17 +9982,14 @@ static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
iq2xs_grid.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq2xs_grid_ptr_ct1 = iq2xs_grid.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
@ -10014,17 +10008,14 @@ static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
@ -10043,17 +10034,14 @@ static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
iq3s_grid.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3s_grid_ptr_ct1 = iq3s_grid.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
@ -10072,17 +10060,14 @@ static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
|
||||
dpct::queue_ptr stream) {
|
||||
const int nb = k / QK_K;
|
||||
{
|
||||
iq1s_grid_gpu.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq1s_grid_ptr_ct1 = iq1s_grid_gpu.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
||||
sycl::range<3>(1, 1, 32),
|
||||
@ -10415,12 +10400,8 @@ static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10428,8 +10409,7 @@ static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
|
||||
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10444,12 +10424,8 @@ static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10457,8 +10433,7 @@ static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
|
||||
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10473,12 +10448,8 @@ static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10486,8 +10457,7 @@ static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
|
||||
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10502,12 +10472,8 @@ static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10515,8 +10481,7 @@ static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
|
||||
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10531,12 +10496,8 @@ static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10544,8 +10505,7 @@ static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
|
||||
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10560,12 +10520,8 @@ static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10573,8 +10529,7 @@ static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
|
||||
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10589,12 +10544,8 @@ static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10602,8 +10553,7 @@ static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
|
||||
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10618,12 +10568,8 @@ static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10631,8 +10577,7 @@ static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
|
||||
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10647,12 +10592,8 @@ static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10660,8 +10601,7 @@ static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
|
||||
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -10676,12 +10616,8 @@ static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10689,13 +10625,13 @@ static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
|
||||
[[intel::reqd_sub_group_size(32)]] {
|
||||
mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
|
||||
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1,
|
||||
iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1);
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
|
||||
float *dst, const int ncols,
|
||||
const int nrows,
|
||||
@ -10705,15 +10641,11 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq2xxs_grid.init(*stream);
|
||||
ksigns_iq2xs.init(*stream);
|
||||
kmask_iq2xs.init(*stream);
|
||||
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq2xxs_grid_ptr_ct1 = iq2xxs_grid.get_ptr();
|
||||
auto ksigns_iq2xs_ptr_ct1 = ksigns_iq2xs.get_ptr();
|
||||
auto kmask_iq2xs_ptr_ct1 = kmask_iq2xs.get_ptr();
|
||||
auto iq2xxs_grid_ptr_ct1 = &iq2xxs_grid[0];
|
||||
auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0];
|
||||
auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0];
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10736,12 +10668,10 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq2xs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq2xs_grid_ptr_ct1 = iq2xs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
|
||||
auto ksigns64_ptr_ct1 = &ksigns64[0];
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10764,12 +10694,10 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3xxs_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3xxs_grid_ptr_ct1 = iq3xxs_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
|
||||
auto ksigns64_ptr_ct1 = &ksigns64[0];
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10792,12 +10720,10 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq3s_grid.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq3s_grid_ptr_ct1 = iq3s_grid.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
|
||||
auto ksigns64_ptr_ct1 = &ksigns64[0];
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
@ -10820,12 +10746,10 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
{
|
||||
iq1s_grid_gpu.init(*stream);
|
||||
ksigns64.init(*stream);
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
auto iq1s_grid_ptr_ct1 = iq1s_grid_gpu.get_ptr();
|
||||
auto ksigns64_ptr_ct1 = ksigns64.get_ptr();
|
||||
auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
|
||||
auto ksigns64_ptr_ct1 = &ksigns64[0];
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
|
27814
ggml-vulkan-shaders.hpp
27814
ggml-vulkan-shaders.hpp
File diff suppressed because it is too large
Load Diff
633
ggml-vulkan.cpp
633
ggml-vulkan.cpp
File diff suppressed because it is too large
Load Diff
@ -11,17 +11,6 @@ extern "C" {
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_vk_instance_init(void);
|
||||
GGML_API void ggml_vk_init_cpu_assist(void);
|
||||
|
||||
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);
|
||||
GGML_API void ggml_vk_preallocate_buffers_cpu_assist(void);
|
||||
GGML_API void ggml_vk_build_graph_cpu_assist(struct ggml_tensor * node, bool last_node);
|
||||
GGML_API bool ggml_vk_compute_forward_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
#endif
|
||||
GGML_API void ggml_vk_graph_cleanup_cpu_assist(void);
|
||||
GGML_API void ggml_vk_free_cpu_assist(void);
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
92
ggml.c
92
ggml.c
@ -278,8 +278,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
|
||||
#include "ggml-opencl.h"
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
#elif defined(GGML_USE_OPENBLAS)
|
||||
#if defined(GGML_BLAS_USE_MKL)
|
||||
@ -289,8 +287,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
||||
#endif
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
#include "ggml-opencl.h"
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
// floating point type used to accumulate sums
|
||||
@ -2717,8 +2713,6 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
||||
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
ggml_cl_init();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
ggml_vk_init_cpu_assist();
|
||||
#endif
|
||||
|
||||
ggml_setup_op_has_task_pass();
|
||||
@ -4579,45 +4573,38 @@ void ggml_mul_mat_set_prec(
|
||||
|
||||
// ggml_mul_mat_id
|
||||
|
||||
// NOTE: id will be removed in the future and instead all the experts listed in ids will be computed
|
||||
// this will allow computing all the used experts in a single matrix multiplication
|
||||
struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b) {
|
||||
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[1]);
|
||||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row
|
||||
GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
|
||||
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
|
||||
GGML_ASSERT(id >= 0 && id < ids->ne[0]);
|
||||
GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id
|
||||
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (as[0]->grad || b->grad) {
|
||||
if (as->grad || b->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||||
const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] };
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, id);
|
||||
ggml_set_op_params_i32(result, 1, n_as);
|
||||
|
||||
result->op = GGML_OP_MUL_MAT_ID;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = ids;
|
||||
result->src[0] = as;
|
||||
result->src[1] = b;
|
||||
|
||||
for (int i = 0; i < n_as; i++) {
|
||||
struct ggml_tensor * a = as[i];
|
||||
GGML_ASSERT(ggml_are_same_shape(as[0], a));
|
||||
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||
GGML_ASSERT(!ggml_is_transposed(a));
|
||||
result->src[i + 2] = a;
|
||||
}
|
||||
result->src[2] = ids;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -10954,10 +10941,9 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
|
||||
const struct ggml_tensor * ids = dst->src[2];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
@ -10987,13 +10973,13 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
// broadcast is not supported with mmid
|
||||
assert(ne12 == 1);
|
||||
assert(ne13 == 1);
|
||||
|
||||
// row groups
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
const int n_as = ggml_get_op_params_i32(dst, 1);
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
char * wdata_src1_end = (src1->type == vec_dot_type) ?
|
||||
(char *) params->wdata :
|
||||
@ -11053,7 +11039,7 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
continue;
|
||||
}
|
||||
|
||||
const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
|
||||
size_t src0_offset = cur_a*src0->nb[2];
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
@ -11088,9 +11074,6 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
continue;
|
||||
}
|
||||
|
||||
assert(ne12 % ne02 == 0);
|
||||
assert(ne13 % ne03 == 0);
|
||||
|
||||
// block-tiling attempt
|
||||
const int64_t blck_0 = 16;
|
||||
const int64_t blck_1 = 16;
|
||||
@ -11107,14 +11090,14 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
|
||||
|
||||
// broadcast src0 into src1
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
//const int64_t i03 = i13/r3;
|
||||
//const int64_t i02 = i12/r2;
|
||||
|
||||
const int64_t i1 = i11;
|
||||
const int64_t i2 = i12;
|
||||
const int64_t i3 = i13;
|
||||
|
||||
const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
|
||||
const char * src0_row = (const char *) src0->data + src0_offset;
|
||||
|
||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||
@ -16128,20 +16111,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_VULKAN)
|
||||
const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
if (skip_cpu) {
|
||||
ggml_vk_check_results_1_cpu_assist(params, tensor);
|
||||
}
|
||||
#endif
|
||||
if (skip_cpu) {
|
||||
return;
|
||||
}
|
||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
|
||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
|
||||
#endif // GGML_USE_VULKAN
|
||||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_DUP:
|
||||
{
|
||||
@ -18484,13 +18453,13 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
cur = 0;
|
||||
const struct ggml_tensor * src0 = node->src[2];
|
||||
const struct ggml_tensor * src0 = node->src[0];
|
||||
const struct ggml_tensor * src1 = node->src[1];
|
||||
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
|
||||
if (src1->type != vec_dot_type) {
|
||||
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
}
|
||||
const int n_as = ggml_get_op_params_i32(node, 1);
|
||||
const int n_as = src0->ne[2];
|
||||
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
|
||||
@ -18617,17 +18586,6 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
|
||||
}
|
||||
ggml_vk_preallocate_buffers_cpu_assist();
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
const int n_threads = cplan->n_threads;
|
||||
|
||||
struct ggml_compute_state_shared state_shared = {
|
||||
@ -18684,10 +18642,6 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
ggml_vk_graph_cleanup_cpu_assist();
|
||||
#endif
|
||||
|
||||
// performance stats (graph)
|
||||
{
|
||||
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
|
||||
|
3
ggml.h
3
ggml.h
@ -1164,8 +1164,7 @@ extern "C" {
|
||||
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b);
|
||||
|
@ -18,6 +18,12 @@ shader_int8_ext = """
|
||||
"""
|
||||
|
||||
# Type-specific defines
|
||||
shader_f32_defines = """
|
||||
#define QUANT_K 1
|
||||
#define QUANT_R 1
|
||||
|
||||
#define A_TYPE float
|
||||
"""
|
||||
shader_f16_defines = """
|
||||
#define QUANT_K 1
|
||||
#define QUANT_R 1
|
||||
@ -157,8 +163,8 @@ struct block_q6_K
|
||||
"""
|
||||
|
||||
# Dequant functions
|
||||
shader_f16_dequant_func = """
|
||||
#define DEQUANT_FUNC vec2 v = vec2(data_a[ib + 0], data_a[ib + 1]);
|
||||
shader_float_dequant_func = """
|
||||
#define DEQUANT_FUNC vec2 v = vec2(ib, ib); // data_a[ib], data_a[ib + 1]);
|
||||
"""
|
||||
|
||||
shader_q4_0_dequant_func = """
|
||||
@ -410,6 +416,133 @@ mulmat_load_q8_0 = """
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
|
||||
|
||||
|
||||
mulmat_load_q2_K = """
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint scalesi = iqs / 8; // 0..15
|
||||
const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
|
||||
const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
|
||||
const uint scales = data_a[ib].scales[scalesi];
|
||||
const vec2 d = vec2(data_a[ib].d);
|
||||
|
||||
const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
|
||||
|
||||
mulmat_load_q3_K = """
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
const uint hmi = (iqs % 16) * 2; // 0,2,4..30
|
||||
const uint j = (iqs % 64) / 4; // 0..3
|
||||
const uint is = iqs / 8; // 0..15
|
||||
const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3
|
||||
const uint qsshift = halfsplit * 2; // 0,2,4,6
|
||||
const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128
|
||||
|
||||
const int8_t us = int8_t(is < 4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
|
||||
is < 8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
|
||||
is < 12 ? (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
|
||||
(data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
|
||||
const float dl = float(data_a[ib].d) * float(us - 32);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));"""
|
||||
|
||||
mulmat_load_q4_K = """
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
uint8_t sc;
|
||||
uint8_t mbyte;
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[ib].scales[is ] & 63);
|
||||
mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
|
||||
mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
|
||||
}
|
||||
const float d = loadd.x * sc;
|
||||
const float m = loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m);"""
|
||||
|
||||
mulmat_load_q5_K = """
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 32; // 0,1,2,3
|
||||
const uint b = (iqs % 32) / 16; // 0,1
|
||||
const uint is = 2 * n + b; // 0..7
|
||||
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
|
||||
const uint qhi = (iqs % 16) * 2; // 0,2,4..30
|
||||
|
||||
const uint8_t hm = uint8_t(1 << (iqs / 16));
|
||||
|
||||
const vec2 loadd = vec2(data_a[ib].d);
|
||||
|
||||
uint8_t sc;
|
||||
uint8_t mbyte;
|
||||
if (is < 4) {
|
||||
sc = uint8_t(data_a[ib].scales[is ] & 63);
|
||||
mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
|
||||
} else {
|
||||
sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
|
||||
mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
|
||||
}
|
||||
const float d = loadd.x * sc;
|
||||
const float m = loadd.y * mbyte;
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m);
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m);"""
|
||||
|
||||
mulmat_load_q6_K = """
|
||||
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
|
||||
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
|
||||
|
||||
const uint ib = idx / 128; // 2 values per idx
|
||||
const uint iqs = idx % 128; // 0..127
|
||||
|
||||
const uint n = iqs / 64; // 0,1
|
||||
const uint b = (iqs % 64) / 32; // 0,1
|
||||
const uint is_b = (iqs % 16) / 8; // 0,1
|
||||
const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
|
||||
const uint is = 8 * n + qhshift + is_b; // 0..15
|
||||
const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
|
||||
const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
|
||||
|
||||
const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
|
||||
|
||||
buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32));
|
||||
buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));"""
|
||||
|
||||
mulmat_body2 = """
|
||||
}
|
||||
[[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
|
||||
@ -1611,8 +1744,9 @@ layout (push_constant) uniform parameter
|
||||
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
|
||||
uint d_offset;
|
||||
float param1; float param2;
|
||||
} p;
|
||||
} p;"""
|
||||
|
||||
generic_unary_op_funcs = """
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
@ -1636,14 +1770,17 @@ uint dst_idx(uint idx) {
|
||||
const uint i11 = (idx - i13_offset - i12_offset) / p.ne10;
|
||||
const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
|
||||
return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + i10*p.nb10;
|
||||
}
|
||||
}"""
|
||||
|
||||
generic_unary_op_main = """
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
"""
|
||||
|
||||
generic_unary_op_combined = f"{generic_unary_op_head}\n{generic_unary_op_funcs}\n{generic_unary_op_main}"
|
||||
|
||||
generic_binary_op_head = """#version 450
|
||||
|
||||
#extension GL_EXT_shader_16bit_storage : require
|
||||
@ -1655,13 +1792,14 @@ layout (push_constant) uniform parameter
|
||||
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
|
||||
uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
|
||||
uint d_offset;
|
||||
uint param1; uint param2;
|
||||
} p;
|
||||
float param1; float param2;
|
||||
} p;"""
|
||||
|
||||
generic_binary_op_funcs = """
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer B {A_TYPE data_b[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
uint src0_idx(uint idx) {
|
||||
@ -1693,14 +1831,17 @@ uint dst_idx(uint idx) {
|
||||
const uint i21 = (idx - i23_offset - i22_offset) / p.ne20;
|
||||
const uint i20 = idx - i23_offset - i22_offset - i21*p.ne20;
|
||||
return i23*p.nb23 + i22*p.nb22 + i21*p.nb21 + i20*p.nb20;
|
||||
}
|
||||
}"""
|
||||
|
||||
generic_binary_op_main = """
|
||||
void main() {
|
||||
if (gl_GlobalInvocationID.x >= p.ne) {
|
||||
return;
|
||||
}
|
||||
"""
|
||||
|
||||
generic_binary_op_combined = f"{generic_binary_op_head}\n{generic_binary_op_funcs}\n{generic_binary_op_main}"
|
||||
|
||||
# MUL F32
|
||||
mul_body = """
|
||||
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
|
||||
@ -1745,39 +1886,55 @@ cpy_f16_f16_end = """
|
||||
"""
|
||||
|
||||
# GET_ROWS
|
||||
get_rows_body = """
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
#extension GL_EXT_shader_8bit_storage : require
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer Y {int data_b[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
|
||||
|
||||
get_rows_float_body = """
|
||||
void main() {
|
||||
const uint col = int(gl_GlobalInvocationID.x) * 2;
|
||||
const uint row = int(gl_GlobalInvocationID.y);
|
||||
const uint i00 = gl_GlobalInvocationID.x;
|
||||
const uint i10 = gl_GlobalInvocationID.y;
|
||||
const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
|
||||
const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
|
||||
|
||||
if (col >= p.KY) {
|
||||
if (i00 >= p.ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint r = uint(data_b[row]);
|
||||
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
|
||||
|
||||
// copy data_a[r*p.KY + col] to dst[row*p.KX + col]
|
||||
const uint xi = r*p.KY + col;
|
||||
const uint di = row*p.KY + col;
|
||||
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
|
||||
const uint ib = xi/QUANT_K; // block index
|
||||
const uint iqs = (xi%QUANT_K)/QUANT_R; // quant index
|
||||
const uint iybs = di - di%QUANT_K; // y block start index
|
||||
#ifndef OPTIMIZATION_ERROR_WORKAROUND
|
||||
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
|
||||
#else
|
||||
data_d[d_offset + i00] = data_a[a_offset + i00];
|
||||
#endif
|
||||
}
|
||||
"""
|
||||
|
||||
get_rows_body = """
|
||||
void main() {
|
||||
const uint i00 = (gl_GlobalInvocationID.x)*2;
|
||||
const uint i10 = gl_GlobalInvocationID.y;
|
||||
const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
|
||||
const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
|
||||
|
||||
if (i00 >= p.ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
|
||||
|
||||
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
|
||||
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
|
||||
|
||||
const uint ib = a_offset + i00/QUANT_K; // block index
|
||||
const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index
|
||||
const uint iybs = i00 - i00%QUANT_K; // dst block start index
|
||||
const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
|
||||
|
||||
DEQUANT_FUNC
|
||||
|
||||
dst[iybs + iqs + 0] = D_TYPE(v.x);
|
||||
dst[iybs + iqs + y_offset] = D_TYPE(v.y);
|
||||
data_d[d_offset + iybs + iqs ] = D_TYPE(v.x);
|
||||
data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y);
|
||||
}
|
||||
"""
|
||||
|
||||
@ -2418,6 +2575,31 @@ async def main():
|
||||
tasks.append(string_to_spv("matmul_q8_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q8_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
stream.clear()
|
||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q2_K_defines, mulmat_body1, mulmat_load_q2_K, mulmat_body2))
|
||||
tasks.append(string_to_spv("matmul_q2_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q2_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q2_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q2_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
stream.clear()
|
||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q3_K_defines, mulmat_body1, mulmat_load_q3_K, mulmat_body2))
|
||||
tasks.append(string_to_spv("matmul_q3_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q3_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q3_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q3_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
stream.clear()
|
||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_K_defines, mulmat_body1, mulmat_load_q4_K, mulmat_body2))
|
||||
tasks.append(string_to_spv("matmul_q4_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q4_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
stream.clear()
|
||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_K_defines, mulmat_body1, mulmat_load_q5_K, mulmat_body2))
|
||||
tasks.append(string_to_spv("matmul_q5_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q5_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
stream.clear()
|
||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q6_K_defines, mulmat_body1, mulmat_load_q6_K, mulmat_body2))
|
||||
tasks.append(string_to_spv("matmul_q6_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q6_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv("matmul_q6_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q6_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||
|
||||
# Shaders where precision is needed, so no fp16 version
|
||||
|
||||
# mul mat vec
|
||||
@ -2426,7 +2608,7 @@ async def main():
|
||||
stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32))
|
||||
|
||||
if i == GGML_TYPE_F16:
|
||||
stream.extend((shader_f16_defines, shader_f16_dequant_func, mul_mat_vec_body))
|
||||
stream.extend((shader_f16_defines, shader_float_dequant_func, mul_mat_vec_body))
|
||||
elif i == GGML_TYPE_Q4_0:
|
||||
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, mul_mat_vec_body))
|
||||
elif i == GGML_TYPE_Q4_1:
|
||||
@ -2488,25 +2670,32 @@ async def main():
|
||||
# get_rows
|
||||
for i in range(0, VK_NUM_TYPES):
|
||||
stream.clear()
|
||||
stream.extend((generic_head, shader_int8_ext, shader_f32))
|
||||
stream.extend((generic_binary_op_head, shader_int8_ext, shader_f32))
|
||||
optimization_workaround = False
|
||||
|
||||
if i == GGML_TYPE_F16:
|
||||
stream.extend((shader_f16_defines, shader_f16_dequant_func, get_rows_body))
|
||||
if i == GGML_TYPE_F32:
|
||||
stream.extend((shader_f32_defines, generic_binary_op_funcs, get_rows_float_body))
|
||||
elif i == GGML_TYPE_F16:
|
||||
stream.extend((shader_f16_defines, generic_binary_op_funcs, get_rows_float_body))
|
||||
optimization_workaround = True
|
||||
elif i == GGML_TYPE_Q4_0:
|
||||
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, get_rows_body))
|
||||
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, generic_binary_op_funcs, get_rows_body))
|
||||
elif i == GGML_TYPE_Q4_1:
|
||||
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, get_rows_body))
|
||||
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, generic_binary_op_funcs, get_rows_body))
|
||||
elif i == GGML_TYPE_Q5_0:
|
||||
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, get_rows_body))
|
||||
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, generic_binary_op_funcs, get_rows_body))
|
||||
elif i == GGML_TYPE_Q5_1:
|
||||
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, get_rows_body))
|
||||
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, generic_binary_op_funcs, get_rows_body))
|
||||
elif i == GGML_TYPE_Q8_0:
|
||||
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, get_rows_body))
|
||||
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, generic_binary_op_funcs, get_rows_body))
|
||||
else:
|
||||
continue
|
||||
|
||||
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float"}))
|
||||
if optimization_workaround:
|
||||
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
|
||||
else:
|
||||
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
@ -2515,20 +2704,20 @@ async def main():
|
||||
tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("cpy_f32_f32", f"{generic_unary_op_head}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("cpy_f32_f16", f"{generic_unary_op_head}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv("cpy_f16_f16", f"{generic_unary_op_head}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv("cpy_f32_f32", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("cpy_f32_f16", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv("cpy_f16_f16", f"{generic_unary_op_combined}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
|
||||
|
||||
tasks.append(string_to_spv("add_f32", f"{generic_binary_op_head}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("add_f32", f"{generic_binary_op_combined}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}))
|
||||
tasks.append(string_to_spv("mul_f32", f"{generic_binary_op_head}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("mul_f32", f"{generic_binary_op_combined}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("scale_f32", f"{generic_unary_op_head}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("scale_f32", f"{generic_unary_op_combined}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("sqr_f32", f"{generic_unary_op_head}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("sqr_f32", f"{generic_unary_op_combined}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("clamp_f32", f"{generic_unary_op_head}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("clamp_f32", f"{generic_unary_op_combined}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
@ -123,6 +123,7 @@ class MODEL_ARCH(IntEnum):
|
||||
GEMMA = auto()
|
||||
STARCODER2 = auto()
|
||||
MAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
|
||||
|
||||
@ -191,6 +192,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
}
|
||||
|
||||
@ -219,9 +221,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
|
||||
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
@ -365,6 +367,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_ACT,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
],
|
||||
MODEL_ARCH.GPTJ: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
@ -606,6 +611,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.XVERSE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.COMMAND_R: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@ -650,6 +671,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
MODEL_ARCH.XVERSE: [
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
],
|
||||
}
|
||||
|
||||
#
|
||||
|
@ -231,9 +231,8 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
@ -252,9 +251,8 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
@ -280,20 +278,20 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok
|
||||
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_K_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ROPE_FREQS: (
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.8.0"
|
||||
version = "0.9.0"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
28
llama.h
28
llama.h
@ -1009,10 +1009,38 @@ extern "C" {
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
struct llama_partial_utf8 {
|
||||
uint32_t value; // bit value so far (unshifted)
|
||||
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
||||
};
|
||||
|
||||
struct llama_grammar {
|
||||
const std::vector<std::vector<llama_grammar_element>> rules;
|
||||
std::vector<std::vector<const llama_grammar_element *>> stacks;
|
||||
|
||||
// buffer for partially generated UTF-8 sequence from accepted tokens
|
||||
llama_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
struct llama_grammar_candidate {
|
||||
size_t index;
|
||||
const uint32_t * code_points;
|
||||
llama_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||||
struct llama_context * ctx
|
||||
);
|
||||
|
||||
std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
|
||||
const std::vector<std::vector<llama_grammar_element>> & rules,
|
||||
const std::vector<std::vector<const llama_grammar_element *>> & stacks,
|
||||
const uint32_t chr);
|
||||
|
||||
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
const std::string & src,
|
||||
llama_partial_utf8 partial_start);
|
||||
|
||||
#endif // LLAMA_API_INTERNAL
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
@ -178,6 +178,9 @@ def get_commit_hexsha8(name):
|
||||
for t in repo.tags:
|
||||
if t.name == name:
|
||||
return t.commit.hexsha[:8]
|
||||
for c in repo.iter_commits("--all"):
|
||||
if c.hexsha[:8] == name[:8]:
|
||||
return c.hexsha[:8]
|
||||
return None
|
||||
|
||||
|
||||
@ -224,7 +227,7 @@ if known_args.compare is not None:
|
||||
hexsha8_compare = get_commit_hexsha8(known_args.compare)
|
||||
name_compare = known_args.compare
|
||||
if hexsha8_compare is None:
|
||||
print(f"ERROR: cannot find data for baseline={known_args.compare}.")
|
||||
print(f"ERROR: cannot find data for compare={known_args.compare}.")
|
||||
sys.exit(1)
|
||||
# Otherwise, search for the commit for llama-bench was most recently run
|
||||
# and that is not a parent of master:
|
||||
|
@ -95,6 +95,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
|
||||
# src/ggml-backend-impl.h -> ggml-backend-impl.h
|
||||
# src/ggml-backend.c -> ggml-backend.c
|
||||
# src/ggml-common.h -> ggml-common.h
|
||||
# src/ggml-cuda/* -> ggml-cuda/
|
||||
# src/ggml-cuda.cu -> ggml-cuda.cu
|
||||
# src/ggml-cuda.h -> ggml-cuda.h
|
||||
# src/ggml-impl.h -> ggml-impl.h
|
||||
@ -128,6 +129,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
|
||||
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
|
||||
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
|
||||
-e 's/src\/ggml-common\.h/ggml-common.h/g' \
|
||||
-e 's/src\/ggml-cuda\//ggml-cuda\//g' \
|
||||
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
|
||||
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
|
||||
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
|
||||
|
@ -5,6 +5,7 @@ cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
||||
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
|
||||
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
|
||||
cp -rpv ../ggml/src/ggml-common.h ./ggml-common.h
|
||||
cp -rpv ../ggml/src/ggml-cuda/* ./ggml-cuda/
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-impl.h ./ggml-impl.h
|
||||
|
@ -979,17 +979,13 @@ struct test_mul_mat_id : public test_case {
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
std::vector<ggml_tensor *> mats;
|
||||
for (int i = 0; i < n_mats; i++) {
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
|
||||
mats.push_back(a);
|
||||
}
|
||||
ggml_tensor * mats = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
|
||||
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
||||
if (v) {
|
||||
ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats, ids, v ? id/2 : id, b);
|
||||
return out;
|
||||
}
|
||||
|
||||
@ -1477,91 +1473,6 @@ struct test_leaky_relu : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// Mixtral MOE
|
||||
struct test_moe : public test_case {
|
||||
const int n_experts;
|
||||
const int n_experts_per_tok;
|
||||
const int n_tokens;
|
||||
const int n_embd;
|
||||
const int n_ff;
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
return "MOE";
|
||||
|
||||
GGML_UNUSED(t);
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
|
||||
}
|
||||
|
||||
test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
|
||||
: n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
|
||||
|
||||
std::vector<ggml_tensor *> ffn_up_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_down_exp(n_experts);
|
||||
|
||||
for (int i = 0; i < n_experts; ++i) {
|
||||
ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
}
|
||||
|
||||
ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
|
||||
ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx,
|
||||
ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
|
||||
|
||||
weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
|
||||
|
||||
weights = ggml_div(ctx, weights, weights_sum);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_experts_per_tok; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
cur_gate = ggml_silu(ctx, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_up, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_expert,
|
||||
ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx, moe_out, cur_expert);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
enum llm_norm_type {
|
||||
LLM_NORM,
|
||||
LLM_NORM_RMS,
|
||||
@ -2169,6 +2080,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_sum_rows());
|
||||
@ -2182,11 +2094,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
|
||||
// these tests are disabled to save execution time, but they can be handy for debugging
|
||||
#if 0
|
||||
#if !defined(__SANITIZE_THREAD__)
|
||||
// FIXME: these tests use too much memory with thread sanitizer
|
||||
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
|
||||
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
|
||||
#endif
|
||||
test_cases.emplace_back(new test_llama(1));
|
||||
test_cases.emplace_back(new test_llama(2));
|
||||
test_cases.emplace_back(new test_falcon(1));
|
||||
|
@ -33,6 +33,18 @@ int main(void) {
|
||||
"{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\\n' + message['content'] | trim + '<end_of_turn>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}",
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
"{% for message in messages %}{% if loop.first %}{{ bos_token }}{% endif %}{% if message['role'] == 'user' %}{{ 'Human: ' + message['content'] + '\\n\\nAssistant: ' + eos_token }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token }}{% endif %}{% endfor %}",
|
||||
// openchat/openchat-3.5-0106
|
||||
// The included chat_template differs from the author's suggestions here: https://huggingface.co/openchat/openchat_3.5/discussions/5#65448109b4a3f3a2f486fd9d
|
||||
// So we match against the included template but implement the suggested version.
|
||||
"{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + message['role'].title() + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}",
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
"{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
|
||||
// eachadea/vicuna-13b-1.1
|
||||
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
|
||||
"{%- for message in messages %}{%- if message['role'] == 'system' -%}{{- '' + message['content'] + '\n\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
|
||||
// Orca-Vicuna
|
||||
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
|
||||
"{%- for message in messages %}{%- if message['role'] == 'system' -%}{{-'SYSTEM: ' + message['content'] + '\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
|
||||
};
|
||||
std::vector<std::string> expected_output = {
|
||||
// teknium/OpenHermes-2.5-Mistral-7B
|
||||
@ -49,6 +61,14 @@ int main(void) {
|
||||
"<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
"Human: You are a helpful assistant\n\nHello\n\nAssistant: </s>Hi there</s>Human: Who are you\n\nAssistant: </s> I am an assistant </s>Human: Another question\n\nAssistant: </s>",
|
||||
// openchat/openchat-3.5-0106
|
||||
"You are a helpful assistant<|end_of_turn|>GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi there<|end_of_turn|>GPT4 Correct User: Who are you<|end_of_turn|>GPT4 Correct Assistant: I am an assistant <|end_of_turn|>GPT4 Correct User: Another question<|end_of_turn|>GPT4 Correct Assistant:",
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
"You are a helpful assistant### Instruction:\nHello\n### Response:\nHi there\n<|EOT|>\n### Instruction:\nWho are you\n### Response:\n I am an assistant \n<|EOT|>\n### Instruction:\nAnother question\n### Response:\n",
|
||||
// eachadea/vicuna-13b-1.1
|
||||
"You are a helpful assistant\n\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
|
||||
// Orca-Vicuna
|
||||
"SYSTEM: You are a helpful assistant\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
|
||||
};
|
||||
std::vector<char> formatted_chat(1024);
|
||||
int32_t res;
|
||||
|
Loading…
Reference in New Issue
Block a user