mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
ggml : add unified SYCL backend for Intel GPUs (#2690)
* first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
b764b8f1d0
commit
0f648573dd
41
.github/workflows/build.yml
vendored
41
.github/workflows/build.yml
vendored
@ -143,6 +143,47 @@ jobs:
|
|||||||
cd build
|
cd build
|
||||||
ctest -L main --verbose
|
ctest -L main --verbose
|
||||||
|
|
||||||
|
ubuntu-22-cmake-sycl:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
|
||||||
|
continue-on-error: true
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
|
||||||
|
- name: add oneAPI to apt
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
cd /tmp
|
||||||
|
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||||
|
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||||
|
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||||
|
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
|
||||||
|
|
||||||
|
- name: install oneAPI dpcpp compiler
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||||
|
|
||||||
|
- name: install oneAPI MKL library
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
sudo apt install intel-oneapi-mkl-devel
|
||||||
|
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Build
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
||||||
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||||
# how to debug it.
|
# how to debug it.
|
||||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||||
project("llama.cpp" C CXX)
|
project("llama.cpp" C CXX)
|
||||||
|
include(CheckIncludeFileCXX)
|
||||||
|
|
||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
|
|
||||||
@ -103,6 +104,8 @@ option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging"
|
|||||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||||
|
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||||
|
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||||
|
|
||||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||||
@ -121,8 +124,12 @@ include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
|||||||
#
|
#
|
||||||
# Compile flags
|
# Compile flags
|
||||||
#
|
#
|
||||||
|
if (LLAMA_SYCL)
|
||||||
|
set(CMAKE_CXX_STANDARD 17)
|
||||||
|
else()
|
||||||
set(CMAKE_CXX_STANDARD 11)
|
set(CMAKE_CXX_STANDARD 11)
|
||||||
|
endif()
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
||||||
set(CMAKE_C_STANDARD 11)
|
set(CMAKE_C_STANDARD 11)
|
||||||
set(CMAKE_C_STANDARD_REQUIRED true)
|
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||||
@ -454,6 +461,32 @@ if (LLAMA_HIPBLAS)
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|
||||||
|
if (LLAMA_SYCL)
|
||||||
|
if ( NOT DEFINED ENV{ONEAPI_ROOT})
|
||||||
|
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
|
||||||
|
endif()
|
||||||
|
#todo: AOT
|
||||||
|
|
||||||
|
find_package(IntelSYCL REQUIRED)
|
||||||
|
if (LLAMA_SYCL_F16)
|
||||||
|
add_compile_definitions(GGML_SYCL_F16)
|
||||||
|
endif()
|
||||||
|
add_compile_definitions(GGML_USE_SYCL)
|
||||||
|
|
||||||
|
add_compile_options(-I./) #include DPCT
|
||||||
|
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||||
|
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||||
|
|
||||||
|
set(GGML_HEADERS_SYCL ggml.h ggml-sycl.h)
|
||||||
|
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
|
||||||
|
|
||||||
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||||
|
endif()
|
||||||
|
|
||||||
function(get_flags CCID CCVER)
|
function(get_flags CCID CCVER)
|
||||||
set(C_FLAGS "")
|
set(C_FLAGS "")
|
||||||
set(CXX_FLAGS "")
|
set(CXX_FLAGS "")
|
||||||
@ -479,11 +512,13 @@ function(get_flags CCID CCVER)
|
|||||||
list(APPEND CXX_FLAGS -Wextra-semi)
|
list(APPEND CXX_FLAGS -Wextra-semi)
|
||||||
endif()
|
endif()
|
||||||
elseif (CCID MATCHES "Intel")
|
elseif (CCID MATCHES "Intel")
|
||||||
|
if (NOT LLAMA_SYCL)
|
||||||
# enable max optimization level when using Intel compiler
|
# enable max optimization level when using Intel compiler
|
||||||
set(C_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
set(C_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
||||||
set(CXX_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
set(CXX_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
||||||
add_link_options(-fuse-ld=lld -static-intel)
|
add_link_options(-fuse-ld=lld -static-intel)
|
||||||
endif()
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||||
@ -799,6 +834,7 @@ add_library(ggml OBJECT
|
|||||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||||
|
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||||
)
|
)
|
||||||
|
|
||||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||||
|
11
README.md
11
README.md
@ -63,7 +63,7 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
|
|||||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||||
- Mixed F16 / F32 precision
|
- Mixed F16 / F32 precision
|
||||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
||||||
- CUDA, Metal and OpenCL GPU backend support
|
- CUDA, Metal, OpenCL, SYCL GPU backend support
|
||||||
|
|
||||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||||
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
||||||
@ -599,6 +599,15 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|
|
||||||
You can get a list of platforms and devices from the `clinfo -l` command, etc.
|
You can get a list of platforms and devices from the `clinfo -l` command, etc.
|
||||||
|
|
||||||
|
- #### SYCL
|
||||||
|
|
||||||
|
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
||||||
|
|
||||||
|
llama.cpp based on SYCL is used to support Intel GPU (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
||||||
|
|
||||||
|
For detailed info, please refer to [llama.cpp for SYCL](README_sycl.md).
|
||||||
|
|
||||||
|
|
||||||
### Prepare Data & Run
|
### Prepare Data & Run
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
252
README_sycl.md
Normal file
252
README_sycl.md
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
# llama.cpp for SYCL
|
||||||
|
|
||||||
|
[Background](#background)
|
||||||
|
|
||||||
|
[OS](#os)
|
||||||
|
|
||||||
|
[Intel GPU](#intel-gpu)
|
||||||
|
|
||||||
|
[Linux](#linux)
|
||||||
|
|
||||||
|
[Environment Variable](#environment-variable)
|
||||||
|
|
||||||
|
[Known Issue](#known-issue)
|
||||||
|
|
||||||
|
[Todo](#todo)
|
||||||
|
|
||||||
|
## Background
|
||||||
|
|
||||||
|
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
|
||||||
|
|
||||||
|
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
|
||||||
|
|
||||||
|
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
|
||||||
|
|
||||||
|
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
|
||||||
|
|
||||||
|
The llama.cpp for SYCL is used to support Intel GPUs.
|
||||||
|
|
||||||
|
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||||
|
|
||||||
|
## OS
|
||||||
|
|
||||||
|
|OS|Status|Verified|
|
||||||
|
|-|-|-|
|
||||||
|
|Linux|Support|Ubuntu 22.04|
|
||||||
|
|Windows|Ongoing| |
|
||||||
|
|
||||||
|
|
||||||
|
## Intel GPU
|
||||||
|
|
||||||
|
|Intel GPU| Status | Verified Model|
|
||||||
|
|-|-|-|
|
||||||
|
|Intel Data Center Max Series| Support| Max 1550|
|
||||||
|
|Intel Data Center Flex Series| Support| Flex 170|
|
||||||
|
|Intel Arc Series| Support| Arc 770|
|
||||||
|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|
||||||
|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
|
||||||
|
|
||||||
|
|
||||||
|
## Linux
|
||||||
|
|
||||||
|
### Setup Environment
|
||||||
|
|
||||||
|
1. Install Intel GPU driver.
|
||||||
|
|
||||||
|
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
|
||||||
|
|
||||||
|
Note: for iGPU, please install the client GPU driver.
|
||||||
|
|
||||||
|
b. Add user to group: video, render.
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo usermod -aG render username
|
||||||
|
sudo usermod -aG video username
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: re-login to enable it.
|
||||||
|
|
||||||
|
c. Check
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt install clinfo
|
||||||
|
sudo clinfo -l
|
||||||
|
```
|
||||||
|
|
||||||
|
Output (example):
|
||||||
|
|
||||||
|
```
|
||||||
|
Platform #0: Intel(R) OpenCL Graphics
|
||||||
|
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
|
||||||
|
|
||||||
|
|
||||||
|
Platform #0: Intel(R) OpenCL HD Graphics
|
||||||
|
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Install Intel® oneAPI Base toolkit.
|
||||||
|
|
||||||
|
|
||||||
|
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||||
|
|
||||||
|
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||||
|
|
||||||
|
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||||
|
|
||||||
|
b. Check
|
||||||
|
|
||||||
|
```
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
sycl-ls
|
||||||
|
```
|
||||||
|
|
||||||
|
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
|
||||||
|
|
||||||
|
Output (example):
|
||||||
|
```
|
||||||
|
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||||
|
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||||
|
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||||
|
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Build locally:
|
||||||
|
|
||||||
|
```
|
||||||
|
mkdir -p build
|
||||||
|
cd build
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
#for FP16
|
||||||
|
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference
|
||||||
|
|
||||||
|
#for FP32
|
||||||
|
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||||
|
|
||||||
|
#build example/main only
|
||||||
|
#cmake --build . --config Release --target main
|
||||||
|
|
||||||
|
#build all binary
|
||||||
|
cmake --build . --config Release -v
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
```
|
||||||
|
./examples/sycl/build.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Note:
|
||||||
|
|
||||||
|
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||||
|
|
||||||
|
### Run
|
||||||
|
|
||||||
|
1. Put model file to folder **models**
|
||||||
|
|
||||||
|
2. Enable oneAPI running environment
|
||||||
|
|
||||||
|
```
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
3. List device ID
|
||||||
|
|
||||||
|
Run without parameter:
|
||||||
|
|
||||||
|
```
|
||||||
|
./build/bin/ls-sycl-device
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
./build/bin/main
|
||||||
|
```
|
||||||
|
|
||||||
|
Check the ID in startup log, like:
|
||||||
|
|
||||||
|
```
|
||||||
|
found 4 SYCL devices:
|
||||||
|
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||||
|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||||
|
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||||
|
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||||
|
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||||
|
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||||
|
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||||
|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|Attribute|Note|
|
||||||
|
|-|-|
|
||||||
|
|compute capability 1.3|Level-zero running time, recommended |
|
||||||
|
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||||
|
|
||||||
|
4. Set device ID and execute llama.cpp
|
||||||
|
|
||||||
|
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
|
||||||
|
|
||||||
|
```
|
||||||
|
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||||
|
```
|
||||||
|
or run by script:
|
||||||
|
|
||||||
|
```
|
||||||
|
./examples/sycl/run_llama2.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Note:
|
||||||
|
|
||||||
|
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||||
|
|
||||||
|
|
||||||
|
5. Check the device ID in output
|
||||||
|
|
||||||
|
Like:
|
||||||
|
```
|
||||||
|
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Environment Variable
|
||||||
|
|
||||||
|
#### Build
|
||||||
|
|
||||||
|
|Name|Value|Function|
|
||||||
|
|-|-|-|
|
||||||
|
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|
||||||
|
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|
||||||
|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|
||||||
|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
|
||||||
|
|
||||||
|
#### Running
|
||||||
|
|
||||||
|
|
||||||
|
|Name|Value|Function|
|
||||||
|
|-|-|-|
|
||||||
|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||||
|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||||
|
|
||||||
|
## Known Issue
|
||||||
|
|
||||||
|
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||||
|
|
||||||
|
Miss to enable oneAPI running environment.
|
||||||
|
|
||||||
|
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
|
||||||
|
|
||||||
|
|
||||||
|
- Hang during startup
|
||||||
|
|
||||||
|
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
|
||||||
|
|
||||||
|
Solution: add **--no-mmap**.
|
||||||
|
|
||||||
|
## Todo
|
||||||
|
|
||||||
|
- Support to build in Windows.
|
||||||
|
|
||||||
|
- Support multiple cards.
|
@ -22,4 +22,8 @@ bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
|||||||
|
|
||||||
# with CUDA support
|
# with CUDA support
|
||||||
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||||
|
|
||||||
|
# with SYCL support
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||||
```
|
```
|
||||||
|
11
ci/run.sh
11
ci/run.sh
@ -10,6 +10,9 @@
|
|||||||
# # with CUDA support
|
# # with CUDA support
|
||||||
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||||
#
|
#
|
||||||
|
# # with SYCL support
|
||||||
|
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||||
|
#
|
||||||
|
|
||||||
if [ -z "$2" ]; then
|
if [ -z "$2" ]; then
|
||||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||||
@ -40,6 +43,14 @@ if [ ! -z ${GG_BUILD_CUDA} ]; then
|
|||||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1"
|
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||||
|
if [ -z ${ONEAPI_ROOT} ]; then
|
||||||
|
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:\n source /opt/intel/oneapi/setvars.sh"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON"
|
||||||
|
fi
|
||||||
## helpers
|
## helpers
|
||||||
|
|
||||||
# download a file if it does not exist or if it is outdated
|
# download a file if it does not exist or if it is outdated
|
||||||
|
@ -42,6 +42,10 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
|
||||||
|
#define GGML_USE_CUBLAS_SYCL
|
||||||
|
#endif
|
||||||
|
|
||||||
int32_t get_num_physical_cores() {
|
int32_t get_num_physical_cores() {
|
||||||
#ifdef __linux__
|
#ifdef __linux__
|
||||||
// enumerate the set of thread siblings, num entries is num cores
|
// enumerate the set of thread siblings, num entries is num cores
|
||||||
@ -599,9 +603,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.main_gpu = std::stoi(argv[i]);
|
params.main_gpu = std::stoi(argv[i]);
|
||||||
#ifndef GGML_USE_CUBLAS
|
#ifndef GGML_USE_CUBLAS_SYCL
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS_SYCL
|
||||||
} else if (arg == "--split-mode" || arg == "-sm") {
|
} else if (arg == "--split-mode" || arg == "-sm") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -618,9 +622,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUBLAS
|
#ifndef GGML_USE_CUBLAS_SYCL
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS_SYCL
|
||||||
|
|
||||||
} else if (arg == "--tensor-split" || arg == "-ts") {
|
} else if (arg == "--tensor-split" || arg == "-ts") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -643,9 +648,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||||||
params.tensor_split[i] = 0.0f;
|
params.tensor_split[i] = 0.0f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUBLAS
|
#ifndef GGML_USE_CUBLAS_SYCL
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting a tensor split has no effect.\n");
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS_SYCL
|
||||||
} else if (arg == "--no-mmap") {
|
} else if (arg == "--no-mmap") {
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
} else if (arg == "--numa") {
|
} else if (arg == "--numa") {
|
||||||
@ -1007,7 +1012,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||||
#endif
|
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||||
printf(" -gan N, --grp-attn-n N\n");
|
printf(" -gan N, --grp-attn-n N\n");
|
||||||
@ -1514,7 +1519,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||||||
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
|
||||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||||
|
@ -23,6 +23,9 @@ else()
|
|||||||
add_subdirectory(infill)
|
add_subdirectory(infill)
|
||||||
add_subdirectory(llama-bench)
|
add_subdirectory(llama-bench)
|
||||||
add_subdirectory(llava)
|
add_subdirectory(llava)
|
||||||
|
if (LLAMA_SYCL)
|
||||||
|
add_subdirectory(sycl)
|
||||||
|
endif()
|
||||||
add_subdirectory(main)
|
add_subdirectory(main)
|
||||||
add_subdirectory(tokenize)
|
add_subdirectory(tokenize)
|
||||||
add_subdirectory(parallel)
|
add_subdirectory(parallel)
|
||||||
|
@ -2099,7 +2099,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#ifdef GGML_USE_CUBLAS
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
||||||
std::string arg_next = argv[i];
|
std::string arg_next = argv[i];
|
||||||
|
|
||||||
// split string by , and /
|
// split string by , and /
|
||||||
@ -2125,7 +2125,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
}
|
}
|
||||||
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
||||||
{
|
{
|
||||||
#ifdef GGML_USE_CUBLAS
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
||||||
params.mul_mat_q = false;
|
params.mul_mat_q = false;
|
||||||
#else
|
#else
|
||||||
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
||||||
@ -2138,7 +2138,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#ifdef GGML_USE_CUBLAS
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
||||||
params.main_gpu = std::stoi(argv[i]);
|
params.main_gpu = std::stoi(argv[i]);
|
||||||
#else
|
#else
|
||||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
||||||
|
9
examples/sycl/CMakeLists.txt
Normal file
9
examples/sycl/CMakeLists.txt
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
# MIT license
|
||||||
|
# Copyright (C) 2024 Intel Corporation
|
||||||
|
# SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
set(TARGET ls-sycl-device)
|
||||||
|
add_executable(${TARGET} ls-sycl-device.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
47
examples/sycl/README.md
Normal file
47
examples/sycl/README.md
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
# llama.cpp/example/sycl
|
||||||
|
|
||||||
|
This example program provide the tools for llama.cpp for SYCL on Intel GPU.
|
||||||
|
|
||||||
|
## Tool
|
||||||
|
|
||||||
|
|Tool Name| Function|Status|
|
||||||
|
|-|-|-|
|
||||||
|
|ls-sycl-device| List all SYCL devices with ID, compute capability, max work group size, ect.|Support|
|
||||||
|
|
||||||
|
### ls-sycl-device
|
||||||
|
|
||||||
|
List all SYCL devices with ID, compute capability, max work group size, ect.
|
||||||
|
|
||||||
|
1. Build the llama.cpp for SYCL for all targets.
|
||||||
|
|
||||||
|
2. Enable oneAPI running environment
|
||||||
|
|
||||||
|
```
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Execute
|
||||||
|
|
||||||
|
```
|
||||||
|
./build/bin/ls-sycl-device
|
||||||
|
```
|
||||||
|
|
||||||
|
Check the ID in startup log, like:
|
||||||
|
|
||||||
|
```
|
||||||
|
found 4 SYCL devices:
|
||||||
|
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||||
|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||||
|
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||||
|
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||||
|
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||||
|
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||||
|
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||||
|
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|Attribute|Note|
|
||||||
|
|-|-|
|
||||||
|
|compute capability 1.3|Level-zero running time, recommended |
|
||||||
|
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
20
examples/sycl/build.sh
Executable file
20
examples/sycl/build.sh
Executable file
@ -0,0 +1,20 @@
|
|||||||
|
|
||||||
|
# MIT license
|
||||||
|
# Copyright (C) 2024 Intel Corporation
|
||||||
|
# SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
mkdir -p build
|
||||||
|
cd build
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
#for FP16
|
||||||
|
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference
|
||||||
|
|
||||||
|
#for FP32
|
||||||
|
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||||
|
|
||||||
|
#build example/main only
|
||||||
|
#cmake --build . --config Release --target main
|
||||||
|
|
||||||
|
#build all binary
|
||||||
|
cmake --build . --config Release -v
|
11
examples/sycl/ls-sycl-device.cpp
Normal file
11
examples/sycl/ls-sycl-device.cpp
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
/*MIT license
|
||||||
|
Copyright (C) 2024 Intel Corporation
|
||||||
|
SPDX-License-Identifier: MIT
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "ggml-sycl.h"
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
ggml_backend_sycl_print_sycl_devices();
|
||||||
|
return 0;
|
||||||
|
}
|
19
examples/sycl/run-llama2.sh
Executable file
19
examples/sycl/run-llama2.sh
Executable file
@ -0,0 +1,19 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# MIT license
|
||||||
|
# Copyright (C) 2024 Intel Corporation
|
||||||
|
# SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
if [ $# -gt 0 ]; then
|
||||||
|
export GGML_SYCL_DEVICE=$1
|
||||||
|
else
|
||||||
|
export GGML_SYCL_DEVICE=0
|
||||||
|
fi
|
||||||
|
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
|
||||||
|
#export GGML_SYCL_DEBUG=1
|
||||||
|
./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||||
|
#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0
|
||||||
|
|
@ -339,6 +339,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
|||||||
ggml_backend_cuda_reg_devices();
|
ggml_backend_cuda_reg_devices();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef GGML_USE_SYCL
|
||||||
|
extern void ggml_backend_sycl_reg_devices(void);
|
||||||
|
ggml_backend_sycl_reg_devices();
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
|
extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
|
||||||
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||||
|
15197
ggml-sycl.cpp
Normal file
15197
ggml-sycl.cpp
Normal file
File diff suppressed because it is too large
Load Diff
27
ggml-sycl.h
Normal file
27
ggml-sycl.h
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
/*MIT license
|
||||||
|
Copyright (C) 2024 Intel Corporation
|
||||||
|
SPDX-License-Identifier: MIT
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define GGML_SYCL_MAX_DEVICES 16
|
||||||
|
#define GGML_SYCL_NAME "SYCL"
|
||||||
|
|
||||||
|
GGML_API void ggml_init_sycl(void);
|
||||||
|
GGML_API bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||||
|
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||||
|
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||||
|
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
22
ggml.c
22
ggml.c
@ -248,6 +248,8 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
#include "ggml-sycl.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// floating point type used to accumulate sums
|
// floating point type used to accumulate sums
|
||||||
@ -2293,6 +2295,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||||||
ggml_init_cublas();
|
ggml_init_cublas();
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
ggml_cl_init();
|
ggml_cl_init();
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
ggml_init_sycl();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
ggml_setup_op_has_task_pass();
|
ggml_setup_op_has_task_pass();
|
||||||
@ -14701,6 +14705,12 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
|
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
|
#ifdef GGML_USE_SYCL
|
||||||
|
bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
|
||||||
|
if (skip_cpu) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
#endif // GGML_USE_SYCL
|
||||||
switch (tensor->op) {
|
switch (tensor->op) {
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
{
|
{
|
||||||
@ -20280,7 +20290,7 @@ int ggml_cpu_has_wasm_simd(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_blas(void) {
|
int ggml_cpu_has_blas(void) {
|
||||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
|
||||||
return 1;
|
return 1;
|
||||||
#else
|
#else
|
||||||
return 0;
|
return 0;
|
||||||
@ -20303,8 +20313,16 @@ int ggml_cpu_has_clblast(void) {
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int ggml_cpu_has_sycl(void) {
|
||||||
|
#if defined(GGML_USE_SYCL)
|
||||||
|
return 1;
|
||||||
|
#else
|
||||||
|
return 0;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_gpublas(void) {
|
int ggml_cpu_has_gpublas(void) {
|
||||||
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
|
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_sycl();
|
||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_sse3(void) {
|
int ggml_cpu_has_sse3(void) {
|
||||||
|
1
ggml.h
1
ggml.h
@ -2266,6 +2266,7 @@ extern "C" {
|
|||||||
GGML_API int ggml_cpu_has_gpublas (void);
|
GGML_API int ggml_cpu_has_gpublas (void);
|
||||||
GGML_API int ggml_cpu_has_sse3 (void);
|
GGML_API int ggml_cpu_has_sse3 (void);
|
||||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||||
|
GGML_API int ggml_cpu_has_sycl (void);
|
||||||
GGML_API int ggml_cpu_has_vsx (void);
|
GGML_API int ggml_cpu_has_vsx (void);
|
||||||
|
|
||||||
//
|
//
|
||||||
|
16
llama.cpp
16
llama.cpp
@ -11,6 +11,8 @@
|
|||||||
# include "ggml-cuda.h"
|
# include "ggml-cuda.h"
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
# include "ggml-opencl.h"
|
# include "ggml-opencl.h"
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
# include "ggml-sycl.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
@ -1278,6 +1280,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer
|
|||||||
if (host_buffer) {
|
if (host_buffer) {
|
||||||
buft = ggml_backend_cuda_host_buffer_type();
|
buft = ggml_backend_cuda_host_buffer_type();
|
||||||
}
|
}
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
buft = ggml_backend_sycl_host_buffer_type();
|
||||||
#elif defined(GGML_USE_CPU_HBM)
|
#elif defined(GGML_USE_CPU_HBM)
|
||||||
buft = ggml_backend_cpu_hbm_buffer_type();
|
buft = ggml_backend_cpu_hbm_buffer_type();
|
||||||
#endif
|
#endif
|
||||||
@ -1297,6 +1301,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
|
|||||||
buft = ggml_backend_metal_buffer_type();
|
buft = ggml_backend_metal_buffer_type();
|
||||||
#elif defined(GGML_USE_CUBLAS)
|
#elif defined(GGML_USE_CUBLAS)
|
||||||
buft = ggml_backend_cuda_buffer_type(gpu);
|
buft = ggml_backend_cuda_buffer_type(gpu);
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
buft = ggml_backend_sycl_buffer_type(gpu);
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
buft = ggml_backend_opencl_buffer_type();
|
buft = ggml_backend_opencl_buffer_type();
|
||||||
#endif
|
#endif
|
||||||
@ -10225,6 +10231,16 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
if (model->n_gpu_layers > 0) {
|
||||||
|
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
|
||||||
|
if (backend == nullptr) {
|
||||||
|
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
|
||||||
|
llama_free(ctx);
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
ctx->backends.push_back(backend);
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
ctx->backend_cpu = ggml_backend_cpu_init();
|
ctx->backend_cpu = ggml_backend_cpu_init();
|
||||||
if (ctx->backend_cpu == nullptr) {
|
if (ctx->backend_cpu == nullptr) {
|
||||||
|
5
llama.h
5
llama.h
@ -6,6 +6,9 @@
|
|||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||||
|
#elif defined(GGML_USE_SYCL)
|
||||||
|
#include "ggml-sycl.h"
|
||||||
|
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
|
||||||
#else
|
#else
|
||||||
#define LLAMA_MAX_DEVICES 1
|
#define LLAMA_MAX_DEVICES 1
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
@ -46,7 +49,7 @@
|
|||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
#define LLAMA_SESSION_VERSION 4
|
#define LLAMA_SESSION_VERSION 4
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_SYCL)
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
#endif
|
#endif
|
||||||
|
@ -239,10 +239,17 @@ static std::string var_to_str(ggml_type type) {
|
|||||||
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
||||||
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
||||||
|
|
||||||
|
#ifdef GGML_USE_SYCL
|
||||||
|
static bool inline _isinf(float f) {
|
||||||
|
return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
static bool inline _isinf(float f) { return std::isinf(f); }
|
||||||
|
#endif
|
||||||
|
|
||||||
// accept FLT_MAX as infinity
|
// accept FLT_MAX as infinity
|
||||||
static bool isinf_or_max(float f) {
|
static bool isinf_or_max(float f) {
|
||||||
return std::isinf(f) || f == FLT_MAX || f == -FLT_MAX;
|
return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool ggml_is_view_op(enum ggml_op op) {
|
static bool ggml_is_view_op(enum ggml_op op) {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user