mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 04:47:04 +01:00
Merge branch 'master' into compilade/refactor-kv-cache
This commit is contained in:
commit
0fd13e9473
5
.github/labeler.yml
vendored
5
.github/labeler.yml
vendored
@ -62,6 +62,8 @@ server:
|
|||||||
ggml:
|
ggml:
|
||||||
- changed-files:
|
- changed-files:
|
||||||
- any-glob-to-any-file:
|
- any-glob-to-any-file:
|
||||||
|
- ggml.c
|
||||||
|
- ggml.h
|
||||||
- ggml-*.c
|
- ggml-*.c
|
||||||
- ggml-*.h
|
- ggml-*.h
|
||||||
- ggml-cuda/**
|
- ggml-cuda/**
|
||||||
@ -71,3 +73,6 @@ nix:
|
|||||||
- "**/*.nix"
|
- "**/*.nix"
|
||||||
- .github/workflows/nix-*.yml
|
- .github/workflows/nix-*.yml
|
||||||
- .devops/nix/nixpkgs-instances.nix
|
- .devops/nix/nixpkgs-instances.nix
|
||||||
|
embedding:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file: examples/embedding/
|
||||||
|
5
.github/workflows/docker.yml
vendored
5
.github/workflows/docker.yml
vendored
@ -42,8 +42,9 @@ jobs:
|
|||||||
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||||
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
|
||||||
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
|
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repo
|
- name: Check out the repo
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
|
@ -124,7 +124,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
|||||||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||||
option(LLAMA_RPC "llama: use RPC" OFF)
|
option(LLAMA_RPC "llama: use RPC" OFF)
|
||||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
|
||||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||||
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
|
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
|
||||||
@ -384,10 +383,6 @@ if (LLAMA_LLAMAFILE)
|
|||||||
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
|
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_QKK_64)
|
|
||||||
add_compile_definitions(GGML_QKK_64)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (LLAMA_CUBLAS)
|
if (LLAMA_CUBLAS)
|
||||||
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
|
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
|
||||||
set(LLAMA_CUDA ON)
|
set(LLAMA_CUDA ON)
|
||||||
|
4
Makefile
4
Makefile
@ -389,10 +389,6 @@ else
|
|||||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
endif
|
endif
|
||||||
|
|
||||||
ifdef LLAMA_QKK_64
|
|
||||||
MK_CPPFLAGS += -DGGML_QKK_64
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifndef LLAMA_NO_ACCELERATE
|
ifndef LLAMA_NO_ACCELERATE
|
||||||
# Mac OS - include Accelerate framework.
|
# Mac OS - include Accelerate framework.
|
||||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||||
|
@ -127,6 +127,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||||
- [x] [OLMo](https://allenai.org/olmo)
|
- [x] [OLMo](https://allenai.org/olmo)
|
||||||
|
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
|
||||||
|
|
||||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
||||||
|
|
||||||
@ -140,6 +141,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||||
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
|
||||||
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
|
||||||
|
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
|
||||||
|
|
||||||
**HTTP server**
|
**HTTP server**
|
||||||
|
|
||||||
|
423
ci/run.sh
423
ci/run.sh
@ -202,12 +202,15 @@ function gg_sum_test_scripts_release {
|
|||||||
}
|
}
|
||||||
|
|
||||||
function gg_get_model {
|
function gg_get_model {
|
||||||
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf"
|
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
|
||||||
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
|
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
|
||||||
if [[ -s $gguf_3b ]]; then
|
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
|
||||||
echo -n "$gguf_3b"
|
if [[ -s $gguf_0 ]]; then
|
||||||
elif [[ -s $gguf_7b ]]; then
|
echo -n "$gguf_0"
|
||||||
echo -n "$gguf_7b"
|
elif [[ -s $gguf_1 ]]; then
|
||||||
|
echo -n "$gguf_1"
|
||||||
|
elif [[ -s $gguf_2 ]]; then
|
||||||
|
echo -n "$gguf_2"
|
||||||
else
|
else
|
||||||
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
|
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
|
||||||
exit 1
|
exit 1
|
||||||
@ -256,139 +259,6 @@ function gg_sum_ctest_with_model_release {
|
|||||||
gg_printf '```\n'
|
gg_printf '```\n'
|
||||||
}
|
}
|
||||||
|
|
||||||
# open_llama_3b_v2
|
|
||||||
|
|
||||||
function gg_run_open_llama_3b_v2 {
|
|
||||||
cd ${SRC}
|
|
||||||
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
|
|
||||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
|
|
||||||
|
|
||||||
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
|
||||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
|
||||||
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
|
||||||
|
|
||||||
path_models="../models-mnt/open-llama/3B-v2"
|
|
||||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
|
||||||
|
|
||||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
|
||||||
|
|
||||||
set -e
|
|
||||||
|
|
||||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
|
||||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
|
||||||
|
|
||||||
python3 ../convert.py ${path_models}
|
|
||||||
|
|
||||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
|
||||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
|
||||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
|
||||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
|
||||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
|
||||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
|
||||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
|
||||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
|
||||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
|
||||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
|
||||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
|
||||||
|
|
||||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
|
||||||
|
|
||||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
|
||||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
|
||||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
|
||||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
|
||||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
|
||||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
|
||||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
|
||||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
|
||||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
|
||||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
|
||||||
|
|
||||||
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
|
||||||
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
|
||||||
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
|
||||||
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
|
||||||
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
|
||||||
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
|
||||||
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
|
||||||
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
|
||||||
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
|
||||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
|
||||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
|
||||||
|
|
||||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
|
||||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
|
||||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
|
||||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
|
||||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
|
||||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
|
||||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
|
||||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
|
||||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
|
||||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
|
||||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
|
||||||
|
|
||||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
|
||||||
|
|
||||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
|
||||||
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
|
||||||
|
|
||||||
function check_ppl {
|
|
||||||
qnt="$1"
|
|
||||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
|
||||||
|
|
||||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
|
||||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
|
||||||
return 20
|
|
||||||
fi
|
|
||||||
|
|
||||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
|
||||||
return 0
|
|
||||||
}
|
|
||||||
|
|
||||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
|
||||||
|
|
||||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
|
||||||
|
|
||||||
set +e
|
|
||||||
}
|
|
||||||
|
|
||||||
function gg_sum_open_llama_3b_v2 {
|
|
||||||
gg_printf '### %s\n\n' "${ci}"
|
|
||||||
|
|
||||||
gg_printf 'OpenLLaMA 3B-v2:\n'
|
|
||||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
|
||||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
|
||||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
|
||||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
|
||||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
|
||||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
|
||||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
|
||||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
|
||||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
|
||||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
|
||||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
|
||||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
|
||||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
|
||||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
|
||||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
|
||||||
}
|
|
||||||
|
|
||||||
# open_llama_7b_v2
|
# open_llama_7b_v2
|
||||||
# requires: GG_BUILD_CUDA
|
# requires: GG_BUILD_CUDA
|
||||||
|
|
||||||
@ -417,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
|
|||||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||||
|
|
||||||
python3 ../convert.py ${path_models}
|
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||||
|
|
||||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||||
@ -526,6 +396,272 @@ function gg_sum_open_llama_7b_v2 {
|
|||||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# pythia_1.4b
|
||||||
|
|
||||||
|
function gg_run_pythia_1_4b {
|
||||||
|
cd ${SRC}
|
||||||
|
|
||||||
|
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
|
||||||
|
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
|
||||||
|
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
|
||||||
|
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
|
||||||
|
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
|
||||||
|
|
||||||
|
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||||
|
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||||
|
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
||||||
|
|
||||||
|
path_models="../models-mnt/pythia/1.4B"
|
||||||
|
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||||
|
|
||||||
|
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||||
|
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||||
|
|
||||||
|
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||||
|
|
||||||
|
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||||
|
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||||
|
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||||
|
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||||
|
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||||
|
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||||
|
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||||
|
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||||
|
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||||
|
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||||
|
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||||
|
|
||||||
|
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||||
|
|
||||||
|
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||||
|
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||||
|
|
||||||
|
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||||
|
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||||
|
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||||
|
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||||
|
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||||
|
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||||
|
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||||
|
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||||
|
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||||
|
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
|
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||||
|
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||||
|
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
|
function check_ppl {
|
||||||
|
qnt="$1"
|
||||||
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
|
|
||||||
|
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||||
|
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||||
|
return 20
|
||||||
|
fi
|
||||||
|
|
||||||
|
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
|
||||||
|
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
|
||||||
|
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||||
|
|
||||||
|
set +e
|
||||||
|
}
|
||||||
|
|
||||||
|
function gg_sum_pythia_1_4b {
|
||||||
|
gg_printf '### %s\n\n' "${ci}"
|
||||||
|
|
||||||
|
gg_printf 'Pythia 1.4B:\n'
|
||||||
|
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||||
|
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||||
|
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||||
|
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||||
|
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||||
|
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||||
|
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||||
|
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||||
|
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||||
|
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||||
|
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||||
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
|
}
|
||||||
|
|
||||||
|
# pythia_2_8b
|
||||||
|
# requires: GG_BUILD_CUDA
|
||||||
|
|
||||||
|
function gg_run_pythia_2_8b {
|
||||||
|
cd ${SRC}
|
||||||
|
|
||||||
|
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
|
||||||
|
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
|
||||||
|
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
|
||||||
|
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
|
||||||
|
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
|
||||||
|
|
||||||
|
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||||
|
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||||
|
|
||||||
|
path_models="../models-mnt/pythia/2.8B"
|
||||||
|
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||||
|
|
||||||
|
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||||
|
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||||
|
|
||||||
|
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||||
|
|
||||||
|
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||||
|
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||||
|
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||||
|
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||||
|
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||||
|
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||||
|
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||||
|
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||||
|
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||||
|
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||||
|
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||||
|
|
||||||
|
wiki_test="${path_wiki}/wiki.test.raw"
|
||||||
|
|
||||||
|
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||||
|
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||||
|
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||||
|
|
||||||
|
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||||
|
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||||
|
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||||
|
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||||
|
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||||
|
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||||
|
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||||
|
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||||
|
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||||
|
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
|
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||||
|
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||||
|
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
|
function check_ppl {
|
||||||
|
qnt="$1"
|
||||||
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
|
|
||||||
|
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||||
|
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||||
|
return 20
|
||||||
|
fi
|
||||||
|
|
||||||
|
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
|
||||||
|
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||||
|
|
||||||
|
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||||
|
|
||||||
|
set +e
|
||||||
|
}
|
||||||
|
|
||||||
|
function gg_sum_pythia_2_8b {
|
||||||
|
gg_printf '### %s\n\n' "${ci}"
|
||||||
|
|
||||||
|
gg_printf 'Pythia 2.8B:\n'
|
||||||
|
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||||
|
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||||
|
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||||
|
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||||
|
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||||
|
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||||
|
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||||
|
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||||
|
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||||
|
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||||
|
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||||
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
|
}
|
||||||
|
|
||||||
# bge-small
|
# bge-small
|
||||||
|
|
||||||
function gg_run_embd_bge_small {
|
function gg_run_embd_bge_small {
|
||||||
@ -552,7 +688,7 @@ function gg_run_embd_bge_small {
|
|||||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||||
|
|
||||||
python3 ../convert-hf-to-gguf.py ${path_models}
|
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||||
|
|
||||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||||
@ -606,9 +742,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
|||||||
|
|
||||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
test $ret -eq 0 && gg_run pythia_1_4b
|
||||||
else
|
else
|
||||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
test $ret -eq 0 && gg_run pythia_2_8b
|
||||||
|
#test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||||
fi
|
fi
|
||||||
test $ret -eq 0 && gg_run ctest_with_model_debug
|
test $ret -eq 0 && gg_run ctest_with_model_debug
|
||||||
test $ret -eq 0 && gg_run ctest_with_model_release
|
test $ret -eq 0 && gg_run ctest_with_model_release
|
||||||
|
@ -673,6 +673,44 @@ class GPTNeoXModel(Model):
|
|||||||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
del bid # unused
|
||||||
|
|
||||||
|
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
|
||||||
|
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
|
||||||
|
|
||||||
|
tensors: list[tuple[str, Tensor]] = []
|
||||||
|
|
||||||
|
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
|
||||||
|
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||||||
|
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||||||
|
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||||||
|
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||||||
|
data_torch = torch.cat(
|
||||||
|
(
|
||||||
|
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||||||
|
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||||||
|
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
|
||||||
|
),
|
||||||
|
dim=0,
|
||||||
|
)
|
||||||
|
logger.info("re-format attention.linear_qkv.weight")
|
||||||
|
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
|
||||||
|
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
|
||||||
|
data_torch = torch.cat(
|
||||||
|
(
|
||||||
|
qkv_bias[:, 0, :].reshape((n_embed,)),
|
||||||
|
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||||||
|
qkv_bias[:, 2, :].reshape((n_embed,)),
|
||||||
|
),
|
||||||
|
dim=0,
|
||||||
|
)
|
||||||
|
logger.info("re-format attention.linear_qkv.bias")
|
||||||
|
|
||||||
|
tensors.append((self.map_tensor_name(name), data_torch))
|
||||||
|
|
||||||
|
return tensors
|
||||||
|
|
||||||
|
|
||||||
@Model.register("BloomForCausalLM")
|
@Model.register("BloomForCausalLM")
|
||||||
class BloomModel(Model):
|
class BloomModel(Model):
|
||||||
@ -2529,6 +2567,157 @@ class JinaBertV2Model(BertModel):
|
|||||||
self.gguf_writer.add_add_eos_token(True)
|
self.gguf_writer.add_add_eos_token(True)
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("ArcticForCausalLM")
|
||||||
|
class ArcticModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.ARCTIC
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
# The reason for using a custom implementation here is that the
|
||||||
|
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
|
||||||
|
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
|
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||||
|
|
||||||
|
if not tokenizer_path.is_file():
|
||||||
|
logger.error(f'Error: Missing {tokenizer_path}')
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# Read the whole vocabulary from the tokenizer.model file
|
||||||
|
tokenizer = SentencePieceProcessor()
|
||||||
|
tokenizer.LoadFromFile(str(tokenizer_path))
|
||||||
|
|
||||||
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||||
|
|
||||||
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
|
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||||
|
|
||||||
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
|
|
||||||
|
piece = tokenizer.IdToPiece(token_id)
|
||||||
|
text = piece.encode("utf-8")
|
||||||
|
score = tokenizer.GetScore(token_id)
|
||||||
|
|
||||||
|
toktype = SentencePieceTokenTypes.NORMAL
|
||||||
|
if tokenizer.IsUnknown(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||||
|
elif tokenizer.IsControl(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.CONTROL
|
||||||
|
elif tokenizer.IsUnused(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.UNUSED
|
||||||
|
elif tokenizer.IsByte(token_id):
|
||||||
|
toktype = SentencePieceTokenTypes.BYTE
|
||||||
|
|
||||||
|
tokens[token_id] = text
|
||||||
|
scores[token_id] = score
|
||||||
|
toktypes[token_id] = toktype
|
||||||
|
|
||||||
|
# Use the added_tokens_decoder field from tokeniser_config.json as the source
|
||||||
|
# of information about added/redefined tokens and modify them accordingly.
|
||||||
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||||
|
if tokenizer_config_file.is_file():
|
||||||
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_config_json = json.load(f)
|
||||||
|
|
||||||
|
if "added_tokens_decoder" in tokenizer_config_json:
|
||||||
|
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
|
||||||
|
for token_id, token_json in added_tokens_decoder.items():
|
||||||
|
token_id = int(token_id)
|
||||||
|
if (token_id >= vocab_size):
|
||||||
|
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||||
|
continue
|
||||||
|
|
||||||
|
token_content = token_json["content"]
|
||||||
|
token_type = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
token_score = -10000.0
|
||||||
|
|
||||||
|
# Map unk_token to UNKNOWN, other special tokens to CONTROL
|
||||||
|
# Set the score to 0.0 as in the original tokenizer.model
|
||||||
|
if ("special" in token_json) and token_json["special"]:
|
||||||
|
if token_content == tokenizer_config_json["unk_token"]:
|
||||||
|
token_type = SentencePieceTokenTypes.UNKNOWN
|
||||||
|
else:
|
||||||
|
token_type = SentencePieceTokenTypes.CONTROL
|
||||||
|
token_score = 0.0
|
||||||
|
|
||||||
|
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
|
||||||
|
tokens[token_id] = token_content.encode("utf-8")
|
||||||
|
toktypes[token_id] = token_type
|
||||||
|
scores[token_id] = token_score
|
||||||
|
|
||||||
|
self.gguf_writer.add_tokenizer_model("llama")
|
||||||
|
self.gguf_writer.add_tokenizer_pre("default")
|
||||||
|
self.gguf_writer.add_token_list(tokens)
|
||||||
|
self.gguf_writer.add_token_scores(scores)
|
||||||
|
self.gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||||
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
hparams = self.hparams
|
||||||
|
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||||
|
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||||
|
|
||||||
|
_experts: list[dict[str, Tensor]] | None = None
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
n_head = self.hparams["num_attention_heads"]
|
||||||
|
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||||
|
|
||||||
|
if name.endswith("q_proj.weight"):
|
||||||
|
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||||
|
if name.endswith("k_proj.weight"):
|
||||||
|
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||||
|
|
||||||
|
# process the experts separately
|
||||||
|
if name.find("block_sparse_moe.experts") != -1:
|
||||||
|
n_experts = self.hparams["num_local_experts"]
|
||||||
|
|
||||||
|
assert bid is not None
|
||||||
|
|
||||||
|
if self._experts is None:
|
||||||
|
self._experts = [{} for _ in range(self.block_count)]
|
||||||
|
|
||||||
|
self._experts[bid][name] = data_torch
|
||||||
|
|
||||||
|
if len(self._experts[bid]) >= n_experts * 3:
|
||||||
|
tensors: list[tuple[str, Tensor]] = []
|
||||||
|
|
||||||
|
# merge the experts into a single 3d tensor
|
||||||
|
for wid in ["w1", "w2", "w3"]:
|
||||||
|
datas: list[Tensor] = []
|
||||||
|
|
||||||
|
for xid in range(n_experts):
|
||||||
|
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||||||
|
datas.append(self._experts[bid][ename])
|
||||||
|
del self._experts[bid][ename]
|
||||||
|
|
||||||
|
data_torch = torch.stack(datas, dim=0)
|
||||||
|
|
||||||
|
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
|
||||||
|
|
||||||
|
new_name = self.map_tensor_name(merged_name)
|
||||||
|
|
||||||
|
tensors.append((new_name, data_torch))
|
||||||
|
return tensors
|
||||||
|
else:
|
||||||
|
return []
|
||||||
|
|
||||||
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
super().write_tensors()
|
||||||
|
|
||||||
|
if self._experts is not None:
|
||||||
|
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||||
|
experts = [k for d in self._experts for k in d.keys()]
|
||||||
|
if len(experts) > 0:
|
||||||
|
raise ValueError(f"Unprocessed experts: {experts}")
|
||||||
|
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
|
||||||
|
|
||||||
|
@ -643,7 +643,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
|||||||
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
|
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
|
||||||
struct ggml_tensor * t16;
|
struct ggml_tensor * t16;
|
||||||
if (enable_flash_attn) {
|
if (enable_flash_attn) {
|
||||||
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
|
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
|
||||||
|
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
|
||||||
} else {
|
} else {
|
||||||
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
||||||
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
||||||
|
@ -474,12 +474,12 @@ int main(int argc, char ** argv) {
|
|||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
const char *control_message;
|
const char * control_message;
|
||||||
if (params.multiline_input) {
|
if (params.multiline_input) {
|
||||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
control_message = " - To return control to the AI, end your input with '\\'.\n"
|
||||||
" - To return control without starting a new line, end your input with '/'.\n";
|
" - To return control without starting a new line, end your input with '/'.\n";
|
||||||
} else {
|
} else {
|
||||||
control_message = " - Press Return to return control to LLaMa.\n"
|
control_message = " - Press Return to return control to the AI.\n"
|
||||||
" - To return control without starting a new line, end your input with '/'.\n"
|
" - To return control without starting a new line, end your input with '/'.\n"
|
||||||
" - If you want to submit another line, end your input with '\\'.\n";
|
" - If you want to submit another line, end your input with '\\'.\n";
|
||||||
}
|
}
|
||||||
|
@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
|
|||||||
|
|
||||||
:: for FP16
|
:: for FP16
|
||||||
:: faster for long-prompt inference
|
:: faster for long-prompt inference
|
||||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||||
|
|
||||||
:: for FP32
|
:: for FP32
|
||||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
|
||||||
if %errorlevel% neq 0 goto ERROR
|
if %errorlevel% neq 0 goto ERROR
|
||||||
:: build example/main only
|
:: build example/main only
|
||||||
:: make main
|
:: make main
|
||||||
|
@ -341,7 +341,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
|||||||
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
|
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
|
||||||
struct ggml_tensor * t16;
|
struct ggml_tensor * t16;
|
||||||
if (enable_flash_attn) {
|
if (enable_flash_attn) {
|
||||||
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
|
||||||
|
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
||||||
} else {
|
} else {
|
||||||
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
||||||
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
||||||
|
12
flake.lock
generated
12
flake.lock
generated
@ -5,11 +5,11 @@
|
|||||||
"nixpkgs-lib": "nixpkgs-lib"
|
"nixpkgs-lib": "nixpkgs-lib"
|
||||||
},
|
},
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1714641030,
|
"lastModified": 1715865404,
|
||||||
"narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=",
|
"narHash": "sha256-/GJvTdTpuDjNn84j82cU6bXztE0MSkdnTWClUCRub78=",
|
||||||
"owner": "hercules-ci",
|
"owner": "hercules-ci",
|
||||||
"repo": "flake-parts",
|
"repo": "flake-parts",
|
||||||
"rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e",
|
"rev": "8dc45382d5206bd292f9c2768b8058a8fd8311d9",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@ -20,11 +20,11 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1714635257,
|
"lastModified": 1715961556,
|
||||||
"narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=",
|
"narHash": "sha256-+NpbZRCRisUHKQJZF3CT+xn14ZZQO+KjxIIanH3Pvn4=",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f",
|
"rev": "4a6b83b05df1a8bd7d99095ec4b4d271f2956b64",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
|
@ -65,13 +65,8 @@ typedef sycl::half2 ggml_half2;
|
|||||||
// QK = number of values after dequantization
|
// QK = number of values after dequantization
|
||||||
// QK_K = super-block size
|
// QK_K = super-block size
|
||||||
|
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
#define QK_K 64
|
|
||||||
#define K_SCALE_SIZE 4
|
|
||||||
#else
|
|
||||||
#define QK_K 256
|
#define QK_K 256
|
||||||
#define K_SCALE_SIZE 12
|
#define K_SCALE_SIZE 12
|
||||||
#endif // GGML_QKK_64
|
|
||||||
|
|
||||||
#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL)
|
#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL)
|
||||||
// QR = QK / number of values before dequantization
|
// QR = QK / number of values before dequantization
|
||||||
@ -131,13 +126,8 @@ typedef sycl::half2 ggml_half2;
|
|||||||
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
||||||
#define QR4_NL 2
|
#define QR4_NL 2
|
||||||
|
|
||||||
#if QK_K == 64
|
|
||||||
#define QI4_XS QI4_NL
|
|
||||||
#define QR4_XS QR4_NL
|
|
||||||
#else
|
|
||||||
#define QI4_XS (QK_K / (4*QR4_XS))
|
#define QI4_XS (QK_K / (4*QR4_XS))
|
||||||
#define QR4_XS 8
|
#define QR4_XS 8
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
||||||
|
|
||||||
@ -228,15 +218,6 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wro
|
|||||||
// weight is represented as x = a * q
|
// weight is represented as x = a * q
|
||||||
// 16 blocks of 16 elements each
|
// 16 blocks of 16 elements each
|
||||||
// Effectively 3.4375 bits per weight
|
// Effectively 3.4375 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
typedef struct {
|
|
||||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
|
||||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
|
||||||
uint8_t scales[2];
|
|
||||||
ggml_half d; // super-block scale
|
|
||||||
} block_q3_K;
|
|
||||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
|
|
||||||
#else
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t hmask[QK_K/8]; // quants - high bit
|
uint8_t hmask[QK_K/8]; // quants - high bit
|
||||||
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
uint8_t qs[QK_K/4]; // quants - low 2 bits
|
||||||
@ -244,20 +225,11 @@ typedef struct {
|
|||||||
ggml_half d; // super-block scale
|
ggml_half d; // super-block scale
|
||||||
} block_q3_K;
|
} block_q3_K;
|
||||||
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
|
||||||
#endif
|
|
||||||
|
|
||||||
// 4-bit quantization
|
// 4-bit quantization
|
||||||
// 8 blocks of 32 elements each
|
// 8 blocks of 32 elements each
|
||||||
// weight is represented as x = a * q + b
|
// weight is represented as x = a * q + b
|
||||||
// Effectively 4.5 bits per weight
|
// Effectively 4.5 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
typedef struct {
|
|
||||||
ggml_half d[2]; // super-block scales/mins
|
|
||||||
uint8_t scales[2]; // 4-bit block scales/mins
|
|
||||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
||||||
} block_q4_K;
|
|
||||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
|
||||||
#else
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
union {
|
union {
|
||||||
struct {
|
struct {
|
||||||
@ -270,21 +242,11 @@ typedef struct {
|
|||||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||||
} block_q4_K;
|
} block_q4_K;
|
||||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
|
||||||
#endif
|
|
||||||
|
|
||||||
// 5-bit quantization
|
// 5-bit quantization
|
||||||
// 8 blocks of 32 elements each
|
// 8 blocks of 32 elements each
|
||||||
// weight is represented as x = a * q + b
|
// weight is represented as x = a * q + b
|
||||||
// Effectively 5.5 bits per weight
|
// Effectively 5.5 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
typedef struct {
|
|
||||||
ggml_half d; // super-block scale
|
|
||||||
int8_t scales[QK_K/16]; // 8-bit block scales
|
|
||||||
uint8_t qh[QK_K/8]; // quants, high bit
|
|
||||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
|
||||||
} block_q5_K;
|
|
||||||
static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
|
|
||||||
#else
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
union {
|
union {
|
||||||
struct {
|
struct {
|
||||||
@ -298,7 +260,6 @@ typedef struct {
|
|||||||
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
uint8_t qs[QK_K/2]; // quants, low 4 bits
|
||||||
} block_q5_K;
|
} block_q5_K;
|
||||||
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
|
||||||
#endif
|
|
||||||
|
|
||||||
// 6-bit quantization
|
// 6-bit quantization
|
||||||
// weight is represented as x = a * q
|
// weight is represented as x = a * q
|
||||||
@ -356,11 +317,7 @@ typedef struct {
|
|||||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||||
|
|
||||||
// 3.4375 bpw
|
// 3.4375 bpw
|
||||||
#if QK_K == 64
|
|
||||||
#define IQ3S_N_SCALE 2
|
|
||||||
#else
|
|
||||||
#define IQ3S_N_SCALE QK_K/64
|
#define IQ3S_N_SCALE QK_K/64
|
||||||
#endif
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
ggml_half d;
|
ggml_half d;
|
||||||
uint8_t qs[QK_K/4];
|
uint8_t qs[QK_K/4];
|
||||||
@ -381,16 +338,9 @@ static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wron
|
|||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
uint8_t qs[QK_K/8]; // grid index, low 8 bits
|
||||||
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
|
||||||
#if QK_K == 64
|
|
||||||
ggml_half d;
|
|
||||||
#endif
|
|
||||||
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
|
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
|
||||||
} block_iq1_m;
|
} block_iq1_m;
|
||||||
#if QK_K == 64
|
|
||||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
|
|
||||||
#else
|
|
||||||
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
|
||||||
#endif
|
|
||||||
|
|
||||||
// Used by IQ1_M quants
|
// Used by IQ1_M quants
|
||||||
typedef union {
|
typedef union {
|
||||||
@ -406,9 +356,6 @@ typedef struct {
|
|||||||
} block_iq4_nl;
|
} block_iq4_nl;
|
||||||
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding");
|
||||||
|
|
||||||
#if QK_K == 64
|
|
||||||
#define block_iq4_xs block_iq4_nl
|
|
||||||
#else
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
ggml_half d;
|
ggml_half d;
|
||||||
uint16_t scales_h;
|
uint16_t scales_h;
|
||||||
@ -416,7 +363,6 @@ typedef struct {
|
|||||||
uint8_t qs[QK_K/2];
|
uint8_t qs[QK_K/2];
|
||||||
} block_iq4_xs;
|
} block_iq4_xs;
|
||||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif // GGML_COMMON_DECL
|
#endif // GGML_COMMON_DECL
|
||||||
#endif // GGML_COMMON_DECL
|
#endif // GGML_COMMON_DECL
|
||||||
|
@ -131,7 +131,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
|||||||
const block_q2_K * x = (const block_q2_K *) vx;
|
const block_q2_K * x = (const block_q2_K *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t n = tid/32;
|
const int64_t n = tid/32;
|
||||||
const int64_t l = tid - 32*n;
|
const int64_t l = tid - 32*n;
|
||||||
const int64_t is = 8*n + l/16;
|
const int64_t is = 8*n + l/16;
|
||||||
@ -145,17 +144,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
|
|||||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||||
#else
|
|
||||||
const int64_t is = tid/16; // 0 or 1
|
|
||||||
const int64_t il = tid%16; // 0...15
|
|
||||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
||||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
||||||
float dall = __low2half(x[i].dm);
|
|
||||||
float dmin = __high2half(x[i].dm);
|
|
||||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
||||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -164,7 +152,6 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
|
|||||||
const int64_t i = blockIdx.x;
|
const int64_t i = blockIdx.x;
|
||||||
const block_q3_K * x = (const block_q3_K *) vx;
|
const block_q3_K * x = (const block_q3_K *) vx;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t r = threadIdx.x/4;
|
const int64_t r = threadIdx.x/4;
|
||||||
const int64_t tid = r/2;
|
const int64_t tid = r/2;
|
||||||
const int64_t is0 = r%2;
|
const int64_t is0 = r%2;
|
||||||
@ -188,31 +175,8 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
|
|||||||
const uint8_t * hm = x[i].hmask;
|
const uint8_t * hm = x[i].hmask;
|
||||||
|
|
||||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||||
#else
|
|
||||||
const int64_t tid = threadIdx.x;
|
|
||||||
const int64_t is = tid/16; // 0 or 1
|
|
||||||
const int64_t il = tid%16; // 0...15
|
|
||||||
const int64_t im = il/8; // 0...1
|
|
||||||
const int64_t in = il%8; // 0...7
|
|
||||||
|
|
||||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
||||||
|
|
||||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
||||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
|
||||||
const float d = (float)x[i].d;
|
|
||||||
|
|
||||||
if (is == 0) {
|
|
||||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
||||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
||||||
} else {
|
|
||||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
||||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||||
if (j < 4) {
|
if (j < 4) {
|
||||||
d = q[j] & 63; m = q[j + 4] & 63;
|
d = q[j] & 63; m = q[j + 4] & 63;
|
||||||
@ -221,7 +185,6 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t
|
|||||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
@ -229,7 +192,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
|
|||||||
|
|
||||||
const int64_t i = blockIdx.x;
|
const int64_t i = blockIdx.x;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
// assume 32 threads
|
// assume 32 threads
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
const int64_t il = tid/8;
|
const int64_t il = tid/8;
|
||||||
@ -253,15 +215,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
|
|||||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int64_t tid = threadIdx.x;
|
|
||||||
const uint8_t * q = x[i].qs;
|
|
||||||
dst_t * y = yy + i*QK_K;
|
|
||||||
const float d = (float)x[i].dm[0];
|
|
||||||
const float m = (float)x[i].dm[1];
|
|
||||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
|
||||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -270,7 +223,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
|
|||||||
|
|
||||||
const int64_t i = blockIdx.x;
|
const int64_t i = blockIdx.x;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
// assume 64 threads - this is very slightly better than the one below
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
const int64_t il = tid/16; // il is in 0...3
|
const int64_t il = tid/16; // il is in 0...3
|
||||||
@ -297,18 +249,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
|
|||||||
hm <<= 1;
|
hm <<= 1;
|
||||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||||
#else
|
|
||||||
const int64_t tid = threadIdx.x;
|
|
||||||
const uint8_t q = x[i].qs[tid];
|
|
||||||
const int64_t im = tid/8; // 0...3
|
|
||||||
const int64_t in = tid%8; // 0...7
|
|
||||||
const int64_t is = tid/16; // 0 or 1
|
|
||||||
const uint8_t h = x[i].qh[in] >> im;
|
|
||||||
const float d = x[i].d;
|
|
||||||
dst_t * y = yy + i*QK_K + tid;
|
|
||||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
|
||||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -316,7 +256,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
|
|||||||
const block_q6_K * x = (const block_q6_K *) vx;
|
const block_q6_K * x = (const block_q6_K *) vx;
|
||||||
|
|
||||||
const int64_t i = blockIdx.x;
|
const int64_t i = blockIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
// assume 64 threads - this is very slightly better than the one below
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
@ -336,24 +275,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
|
|||||||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||||
#else
|
|
||||||
|
|
||||||
// assume 32 threads
|
|
||||||
const int64_t tid = threadIdx.x;
|
|
||||||
const int64_t ip = tid/16; // 0 or 1
|
|
||||||
const int64_t il = tid - 16*ip; // 0...15
|
|
||||||
|
|
||||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
|
||||||
|
|
||||||
const float d = x[i].d;
|
|
||||||
|
|
||||||
const uint8_t ql = x[i].ql[16*ip + il];
|
|
||||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
|
||||||
const int8_t * sc = x[i].scales;
|
|
||||||
|
|
||||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
||||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -363,7 +284,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
|
|||||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -374,10 +294,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
|
|||||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -387,7 +303,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -396,10 +311,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
|||||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -409,7 +320,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
|
|||||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -417,10 +327,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
|
|||||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -430,7 +336,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
|
|||||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -445,10 +350,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
|
|||||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -458,7 +359,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
|||||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -471,10 +371,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
|
|||||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -484,7 +380,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
|||||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -497,10 +392,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
|
|||||||
for (int j = 0; j < 8; ++j) {
|
for (int j = 0; j < 8; ++j) {
|
||||||
y[j] = d * (q[j] + delta);
|
y[j] = d * (q[j] + delta);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -510,7 +401,6 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
|
|||||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||||
|
|
||||||
const int64_t tid = threadIdx.x;
|
const int64_t tid = threadIdx.x;
|
||||||
#if QK_K == 256
|
|
||||||
const int64_t il = tid/8; // 0...3
|
const int64_t il = tid/8; // 0...3
|
||||||
const int64_t ib = tid%8; // 0...7
|
const int64_t ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -527,13 +417,8 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
|
|||||||
for (int j = 0; j < 8; ++j) {
|
for (int j = 0; j < 8; ++j) {
|
||||||
y[j] = d * (q[j] + delta);
|
y[j] = d * (q[j] + delta);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
|
|
||||||
@ -550,10 +435,8 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
|
|||||||
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
||||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K != 64
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||||
const int64_t i = blockIdx.x;
|
const int64_t i = blockIdx.x;
|
||||||
@ -570,7 +453,6 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
|
|||||||
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||||
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
||||||
@ -592,21 +474,13 @@ static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half *
|
|||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
#else
|
|
||||||
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
#else
|
|
||||||
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -632,21 +506,13 @@ static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k
|
|||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
#else
|
|
||||||
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
||||||
#else
|
|
||||||
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -700,11 +566,7 @@ static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t
|
|||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
||||||
const int nb = (k + QK_K - 1) / QK_K;
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
#if QK_K == 64
|
|
||||||
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
|
||||||
#else
|
|
||||||
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename src_t, typename dst_t>
|
template <typename src_t, typename dst_t>
|
||||||
|
@ -22,7 +22,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||||
|
|
||||||
@ -71,37 +70,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
|
|||||||
tmp += dall * sum1 - dmin * sum2;
|
tmp += dall * sum1 - dmin * sum2;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
||||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
||||||
const int offset = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
uint32_t uaux[2];
|
|
||||||
const uint8_t * d = (const uint8_t *)uaux;
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + offset;
|
|
||||||
const uint8_t * q = x[i].qs + offset;
|
|
||||||
const uint32_t * s = (const uint32_t *)x[i].scales;
|
|
||||||
|
|
||||||
uaux[0] = s[0] & 0x0f0f0f0f;
|
|
||||||
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
|
||||||
|
|
||||||
const float2 dall = __half22float2(x[i].dm);
|
|
||||||
|
|
||||||
float sum1 = 0, sum2 = 0;
|
|
||||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
||||||
const uint8_t ql = q[l];
|
|
||||||
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
|
||||||
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
|
||||||
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
|
||||||
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
|
||||||
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
|
||||||
}
|
|
||||||
tmp += dall.x * sum1 - dall.y * sum2;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
tmp = warp_reduce_sum(tmp);
|
tmp = warp_reduce_sum(tmp);
|
||||||
@ -123,8 +91,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x0303;
|
const uint16_t kmask1 = 0x0303;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
@ -175,34 +141,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
|
|||||||
tmp += d * sum;
|
tmp += d * sum;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
|
|
||||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
||||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
||||||
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
|
||||||
const int in = offset/8; // 0 or 1
|
|
||||||
const int im = offset%8; // 0...7
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + offset;
|
|
||||||
const uint8_t * q = x[i].qs + offset;
|
|
||||||
const uint8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
const float dall = (float)x[i].d;
|
|
||||||
|
|
||||||
float sum = 0;
|
|
||||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
||||||
const uint8_t hl = x[i].hmask[im+l] >> in;
|
|
||||||
const uint8_t ql = q[l];
|
|
||||||
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
|
||||||
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
|
||||||
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
|
||||||
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
tmp = warp_reduce_sum(tmp);
|
tmp = warp_reduce_sum(tmp);
|
||||||
@ -221,7 +159,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const uint16_t kmask1 = 0x3f3f;
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
const uint16_t kmask3 = 0xc0c0;
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
@ -306,36 +243,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
||||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
||||||
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
uint16_t aux16[2];
|
|
||||||
const uint8_t * s = (const uint8_t *)aux16;
|
|
||||||
|
|
||||||
float tmp = 0;
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
const uint8_t * q = x[i].qs + step;
|
|
||||||
const float * y = yy + i*QK_K + step;
|
|
||||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
||||||
aux16[0] = a[0] & 0x0f0f;
|
|
||||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
||||||
const float d = (float)x[i].dm[0];
|
|
||||||
const float m = (float)x[i].dm[1];
|
|
||||||
float sum = 0.f;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
|
||||||
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
|
||||||
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
|
||||||
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
tmp = warp_reduce_sum(tmp);
|
tmp = warp_reduce_sum(tmp);
|
||||||
@ -355,7 +262,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const uint16_t kmask1 = 0x3f3f;
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
const uint16_t kmask3 = 0xc0c0;
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
@ -426,30 +332,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
|
|||||||
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
|
||||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
||||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
const int im = step/8;
|
|
||||||
const int in = step%8;
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
const uint8_t * q = x[i].qs + step;
|
|
||||||
const int8_t * s = x[i].scales;
|
|
||||||
const float * y = yy + i*QK_K + step;
|
|
||||||
const float d = x[i].d;
|
|
||||||
float sum = 0.f;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
const uint8_t h = x[i].qh[in+j] >> im;
|
|
||||||
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
|
||||||
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
|
||||||
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
|
||||||
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
tmp = warp_reduce_sum(tmp);
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
@ -470,8 +352,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||||
|
|
||||||
@ -526,37 +406,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
|
|
||||||
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
|
|
||||||
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + step;
|
|
||||||
const uint8_t * ql = x[i].ql + step;
|
|
||||||
const uint8_t * qh = x[i].qh + step;
|
|
||||||
const int8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
const float d = x[i+0].d;
|
|
||||||
|
|
||||||
float sum = 0;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
|
||||||
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
|
||||||
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
|
||||||
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
tmp = warp_reduce_sum(tmp);
|
tmp = warp_reduce_sum(tmp);
|
||||||
|
|
||||||
|
@ -83,7 +83,7 @@ static __global__ void flash_attn_tile_ext_f16(
|
|||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
const int i = i0 + threadIdx.x;
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -79,7 +79,7 @@ static __global__ void flash_attn_tile_ext_f32(
|
|||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||||
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
|
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||||
}
|
}
|
||||||
|
@ -94,7 +94,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
const int i = i0 + threadIdx.x;
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -212,7 +212,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
if (ic0 + j_VKQ >= ne01) {
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -227,7 +227,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && ic0 + tid < ne01) {
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
@ -91,7 +91,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
const int i = i0 + threadIdx.x;
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
|
Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||||
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
||||||
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
||||||
}
|
}
|
||||||
@ -200,7 +200,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
if (ic0 + j_VKQ >= ne01) {
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -215,7 +215,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid < ncols && ic0 + tid < ne01) {
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -826,11 +826,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
|||||||
|
|
||||||
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
||||||
#else
|
|
||||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -933,9 +929,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
|||||||
|
|
||||||
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
|
@ -712,7 +712,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|||||||
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
|
|
||||||
#ifndef GGML_QKK_64
|
|
||||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||||||
|
|
||||||
int v[2];
|
int v[2];
|
||||||
@ -754,58 +753,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
||||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
||||||
|
|
||||||
float sumf_d = 0.0f;
|
|
||||||
float sumf_m = 0.0f;
|
|
||||||
|
|
||||||
uint16_t aux16[2];
|
|
||||||
const uint8_t * s = (const uint8_t *)aux16;
|
|
||||||
|
|
||||||
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
|
||||||
aux16[0] = a[0] & 0x0f0f;
|
|
||||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
||||||
|
|
||||||
const float dall = bq4_K->dm[0];
|
|
||||||
const float dmin = bq4_K->dm[1];
|
|
||||||
|
|
||||||
const float d8_1 = __low2float(bq8_1[0].ds);
|
|
||||||
const float d8_2 = __low2float(bq8_1[1].ds);
|
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
||||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
||||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
||||||
|
|
||||||
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
|
||||||
const int v1 = q4[0];
|
|
||||||
const int v2 = q4[4];
|
|
||||||
|
|
||||||
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
|
||||||
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
|
||||||
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
|
||||||
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
|
||||||
|
|
||||||
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
|
||||||
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
|
||||||
|
|
||||||
return dall * sumf_d - dmin * sumf_m;
|
|
||||||
|
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
|
|
||||||
#ifndef GGML_QKK_64
|
|
||||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||||||
|
|
||||||
int vl[2];
|
int vl[2];
|
||||||
@ -847,48 +799,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
|
||||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
||||||
|
|
||||||
const int8_t * s = bq5_K->scales;
|
|
||||||
|
|
||||||
const float d = bq5_K->d;
|
|
||||||
|
|
||||||
const float d8_1 = __low2half(bq8_1[0].ds);
|
|
||||||
const float d8_2 = __low2half(bq8_1[1].ds);
|
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
||||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
||||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
||||||
|
|
||||||
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
|
||||||
const int vl1 = ql[0];
|
|
||||||
const int vl2 = ql[4];
|
|
||||||
|
|
||||||
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
|
||||||
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
|
||||||
const int in = step%8; // 0, 4, 0, 4
|
|
||||||
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
|
||||||
|
|
||||||
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
|
||||||
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
|
||||||
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
|
||||||
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
|
||||||
|
|
||||||
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
|
||||||
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
|
||||||
|
|
||||||
return d * sumf_d;
|
|
||||||
|
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
||||||
@ -919,7 +829,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
||||||
|
|
||||||
#if QR2_XXS == 8
|
#if QR2_XXS == 8
|
||||||
@ -960,15 +869,11 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
|||||||
}
|
}
|
||||||
return d * (sumi1 + sumi2);
|
return d * (sumi1 + sumi2);
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1002,17 +907,12 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|||||||
GGML_UNUSED(ksigns64);
|
GGML_UNUSED(ksigns64);
|
||||||
NO_DEVICE_CODE;
|
NO_DEVICE_CODE;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
GGML_UNUSED(ksigns64);
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO
|
// TODO
|
||||||
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1048,16 +948,11 @@ static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
|||||||
GGML_UNUSED(ksigns64);
|
GGML_UNUSED(ksigns64);
|
||||||
NO_DEVICE_CODE;
|
NO_DEVICE_CODE;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
GGML_UNUSED(ksigns64);
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1082,16 +977,12 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
|||||||
#else
|
#else
|
||||||
NO_DEVICE_CODE;
|
NO_DEVICE_CODE;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: don't use lookup table for signs
|
// TODO: don't use lookup table for signs
|
||||||
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1114,14 +1005,10 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
|||||||
#else
|
#else
|
||||||
NO_DEVICE_CODE;
|
NO_DEVICE_CODE;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1149,14 +1036,10 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
|||||||
const float d = d1q * __low2float (bq8_1[ib32].ds);
|
const float d = d1q * __low2float (bq8_1[ib32].ds);
|
||||||
const float m = d1q * __high2float(bq8_1[ib32].ds);
|
const float m = d1q * __high2float(bq8_1[ib32].ds);
|
||||||
return d * sumi + m * delta;
|
return d * sumi + m * delta;
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -1192,9 +1075,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
|||||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
|
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
|
||||||
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
@ -1250,9 +1130,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
|||||||
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
|
|
||||||
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||||
|
|
||||||
@ -1270,10 +1148,6 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
|||||||
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||||||
}
|
}
|
||||||
return d * (sumi1 + sumi2);
|
return d * (sumi1 + sumi2);
|
||||||
|
|
||||||
#else
|
|
||||||
NO_DEVICE_CODE;
|
|
||||||
#endif
|
|
||||||
#else
|
#else
|
||||||
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
|
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
|
||||||
#endif
|
#endif
|
||||||
|
17
ggml-metal.m
17
ggml-metal.m
@ -381,10 +381,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
// dictionary of preprocessor macros
|
// dictionary of preprocessor macros
|
||||||
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
|
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
|
||||||
|
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
prep[@"GGML_QKK_64"] = @(1);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
MTLCompileOptions* options = [MTLCompileOptions new];
|
MTLCompileOptions* options = [MTLCompileOptions new];
|
||||||
options.preprocessorMacros = prep;
|
options.preprocessorMacros = prep;
|
||||||
|
|
||||||
@ -1773,11 +1769,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q3_K) {
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
#else
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
@ -2018,12 +2010,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
{
|
{
|
||||||
nth0 = 4;
|
nth0 = 4;
|
||||||
nth1 = 16;
|
nth1 = 16;
|
||||||
#if QK_K == 64
|
|
||||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
|
||||||
#else
|
|
||||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
||||||
#endif
|
|
||||||
|
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
@ -2088,11 +2075,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q3_K) {
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
#ifdef GGML_QKK_64
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
#else
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
398
ggml-metal.metal
398
ggml-metal.metal
@ -3386,7 +3386,6 @@ void kernel_mul_mv_q2_K_f32_impl(
|
|||||||
|
|
||||||
const int step = sizeof(block_q2_K) * nb;
|
const int step = sizeof(block_q2_K) * nb;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int ix = tiisg/8; // 0...3
|
const int ix = tiisg/8; // 0...3
|
||||||
const int it = tiisg%8; // 0...7
|
const int it = tiisg%8; // 0...7
|
||||||
const int iq = it/4; // 0 or 1
|
const int iq = it/4; // 0 or 1
|
||||||
@ -3438,57 +3437,6 @@ void kernel_mul_mv_q2_K_f32_impl(
|
|||||||
|
|
||||||
y4 += 4 * QK_K;
|
y4 += 4 * QK_K;
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int ix = tiisg/2; // 0...15
|
|
||||||
const int it = tiisg%2; // 0...1
|
|
||||||
|
|
||||||
device const float * y4 = y + ix * QK_K + 8 * it;
|
|
||||||
|
|
||||||
for (int ib = ix; ib < nb; ib += 16) {
|
|
||||||
|
|
||||||
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
for (int i = 0; i < 8; ++i) {
|
|
||||||
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
|
||||||
yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
|
|
||||||
yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
|
|
||||||
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
|
|
||||||
}
|
|
||||||
|
|
||||||
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
|
|
||||||
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
|
|
||||||
device const half * dh = &x[ib].d;
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
|
|
||||||
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
for (int i = 0; i < 8; i += 2) {
|
|
||||||
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
|
|
||||||
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
|
|
||||||
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
|
|
||||||
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
|
|
||||||
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
|
|
||||||
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
|
|
||||||
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
|
|
||||||
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
|
|
||||||
}
|
|
||||||
|
|
||||||
float dall = dh[0];
|
|
||||||
float dmin = dh[1];
|
|
||||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
|
|
||||||
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
|
|
||||||
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
|
|
||||||
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
|
|
||||||
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
|
|
||||||
|
|
||||||
qs += step/2;
|
|
||||||
sc += step;
|
|
||||||
dh += step/2;
|
|
||||||
}
|
|
||||||
|
|
||||||
y4 += 16 * QK_K;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; ++row) {
|
for (int row = 0; row < N_DST; ++row) {
|
||||||
all_sum = simd_sum(sumf[row]);
|
all_sum = simd_sum(sumf[row]);
|
||||||
@ -3526,7 +3474,6 @@ kernel void kernel_mul_mv_q2_K_f32(
|
|||||||
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
void kernel_mul_mv_q3_K_f32_impl(
|
void kernel_mul_mv_q3_K_f32_impl(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
@ -3685,84 +3632,6 @@ void kernel_mul_mv_q3_K_f32_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
void kernel_mul_mv_q3_K_f32_impl(
|
|
||||||
device const void * src0,
|
|
||||||
device const float * src1,
|
|
||||||
device float * dst,
|
|
||||||
constant int64_t & ne00,
|
|
||||||
constant int64_t & ne01,
|
|
||||||
constant int64_t & ne02,
|
|
||||||
constant int64_t & ne10,
|
|
||||||
constant int64_t & ne12,
|
|
||||||
constant int64_t & ne0,
|
|
||||||
constant int64_t & ne1,
|
|
||||||
constant uint & r2,
|
|
||||||
constant uint & r3,
|
|
||||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
|
||||||
const int64_t r1 = tgpig.y;
|
|
||||||
const int64_t im = tgpig.z;
|
|
||||||
|
|
||||||
const int row = 2 * r0 + sgitg;
|
|
||||||
|
|
||||||
const uint i12 = im%ne12;
|
|
||||||
const uint i13 = im/ne12;
|
|
||||||
|
|
||||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
|
||||||
|
|
||||||
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
|
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
|
||||||
|
|
||||||
const int ix = tiisg/4;
|
|
||||||
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
|
|
||||||
const int iq = il/8; // 0, 0, 1, 1
|
|
||||||
const int in = il%8; // 0, 4, 0, 4
|
|
||||||
|
|
||||||
float2 sum = {0.f, 0.f};
|
|
||||||
|
|
||||||
for (int i = ix; i < nb; i += 8) {
|
|
||||||
|
|
||||||
const float d_all = (float)(x[i].d);
|
|
||||||
|
|
||||||
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
|
|
||||||
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
|
|
||||||
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
|
|
||||||
device const float * y = yy + i * QK_K + il;
|
|
||||||
|
|
||||||
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
|
|
||||||
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
|
|
||||||
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
|
|
||||||
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
|
|
||||||
|
|
||||||
for (int l = 0; l < 4; l += 2) {
|
|
||||||
const uint16_t hm = h[l/2] >> iq;
|
|
||||||
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
|
|
||||||
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
|
|
||||||
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
|
|
||||||
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
|
|
||||||
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
|
|
||||||
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
|
|
||||||
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
|
|
||||||
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
const float sumf = sum[0] + sum[1] * 1.f/256.f;
|
|
||||||
|
|
||||||
const float tot = simd_sum(sumf);
|
|
||||||
if (tiisg == 0) {
|
|
||||||
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
[[host_name("kernel_mul_mv_q3_K_f32")]]
|
[[host_name("kernel_mul_mv_q3_K_f32")]]
|
||||||
kernel void kernel_mul_mv_q3_K_f32(
|
kernel void kernel_mul_mv_q3_K_f32(
|
||||||
@ -3792,7 +3661,6 @@ kernel void kernel_mul_mv_q3_K_f32(
|
|||||||
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
void kernel_mul_mv_q4_K_f32_impl(
|
void kernel_mul_mv_q4_K_f32_impl(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
@ -3906,103 +3774,6 @@ void kernel_mul_mv_q4_K_f32_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
void kernel_mul_mv_q4_K_f32_impl(
|
|
||||||
device const void * src0,
|
|
||||||
device const float * src1,
|
|
||||||
device float * dst,
|
|
||||||
constant int64_t & ne00,
|
|
||||||
constant int64_t & ne01,
|
|
||||||
constant int64_t & ne02,
|
|
||||||
constant int64_t & ne10,
|
|
||||||
constant int64_t & ne12,
|
|
||||||
constant int64_t & ne0,
|
|
||||||
constant int64_t & ne1,
|
|
||||||
constant uint & r2,
|
|
||||||
constant uint & r3,
|
|
||||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
||||||
|
|
||||||
const int ix = tiisg/4; // 0...7
|
|
||||||
const int it = tiisg%4; // 0...3
|
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
|
||||||
const int r0 = tgpig.x;
|
|
||||||
const int r1 = tgpig.y;
|
|
||||||
const int im = tgpig.z;
|
|
||||||
const int first_row = r0 * N_DST;
|
|
||||||
const int ib_row = first_row * nb;
|
|
||||||
|
|
||||||
const uint i12 = im%ne12;
|
|
||||||
const uint i13 = im/ne12;
|
|
||||||
|
|
||||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
|
||||||
|
|
||||||
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
|
|
||||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
|
||||||
|
|
||||||
float yl[8];
|
|
||||||
float yh[8];
|
|
||||||
float sumf[N_DST]={0.f}, all_sum;
|
|
||||||
|
|
||||||
const int step = sizeof(block_q4_K) * nb / 2;
|
|
||||||
|
|
||||||
device const float * y4 = y + ix * QK_K + 8 * it;
|
|
||||||
|
|
||||||
uint16_t sc16[4];
|
|
||||||
|
|
||||||
for (int ib = ix; ib < nb; ib += 8) {
|
|
||||||
|
|
||||||
float2 sumy = {0.f, 0.f};
|
|
||||||
for (int i = 0; i < 8; ++i) {
|
|
||||||
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
|
|
||||||
yh[i] = y4[i+32]; sumy[1] += yh[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
|
|
||||||
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
|
|
||||||
device const half * dh = x[ib].d;
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
|
|
||||||
sc16[0] = sc[0] & 0x000f;
|
|
||||||
sc16[1] = sc[0] & 0x0f00;
|
|
||||||
sc16[2] = sc[0] & 0x00f0;
|
|
||||||
sc16[3] = sc[0] & 0xf000;
|
|
||||||
|
|
||||||
float2 acc1 = {0.f, 0.f};
|
|
||||||
float2 acc2 = {0.f, 0.f};
|
|
||||||
for (int i = 0; i < 8; i += 2) {
|
|
||||||
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
|
|
||||||
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
|
|
||||||
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
|
|
||||||
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
|
|
||||||
}
|
|
||||||
|
|
||||||
float dall = dh[0];
|
|
||||||
float dmin = dh[1];
|
|
||||||
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
|
|
||||||
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
|
|
||||||
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
|
|
||||||
|
|
||||||
qs += step;
|
|
||||||
sc += step;
|
|
||||||
dh += step;
|
|
||||||
}
|
|
||||||
|
|
||||||
y4 += 8 * QK_K;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; ++row) {
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0) {
|
|
||||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
[[host_name("kernel_mul_mv_q4_K_f32")]]
|
[[host_name("kernel_mul_mv_q4_K_f32")]]
|
||||||
kernel void kernel_mul_mv_q4_K_f32(
|
kernel void kernel_mul_mv_q4_K_f32(
|
||||||
@ -4070,8 +3841,6 @@ void kernel_mul_mv_q5_K_f32_impl(
|
|||||||
|
|
||||||
const int step = sizeof(block_q5_K) * nb;
|
const int step = sizeof(block_q5_K) * nb;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
#
|
|
||||||
float yl[16], yh[16];
|
float yl[16], yh[16];
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x3f3f;
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
@ -4154,54 +3923,6 @@ void kernel_mul_mv_q5_K_f32_impl(
|
|||||||
y1 += 4 * QK_K;
|
y1 += 4 * QK_K;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
float yl[8], yh[8];
|
|
||||||
|
|
||||||
const int il = 4 * (tiisg/8); // 0, 4, 8, 12
|
|
||||||
const int ix = tiisg%8;
|
|
||||||
const int iq = il/8; // 0, 0, 1, 1
|
|
||||||
const int in = il%8; // 0, 4, 0, 4
|
|
||||||
|
|
||||||
device const float * y = yy + ix*QK_K + il;
|
|
||||||
|
|
||||||
for (int i = ix; i < nb; i += 8) {
|
|
||||||
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
|
||||||
yl[l+0] = y[l+ 0];
|
|
||||||
yl[l+4] = y[l+16];
|
|
||||||
yh[l+0] = y[l+32];
|
|
||||||
yh[l+4] = y[l+48];
|
|
||||||
}
|
|
||||||
|
|
||||||
device const half * dh = &x[i].d;
|
|
||||||
device const uint8_t * q = x[i].qs + il;
|
|
||||||
device const uint8_t * h = x[i].qh + in;
|
|
||||||
device const int8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
for (int row = 0; row < 2; ++row) {
|
|
||||||
|
|
||||||
const float d = dh[0];
|
|
||||||
|
|
||||||
float2 acc = {0.f, 0.f};
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
|
||||||
const uint8_t hl = h[l] >> iq;
|
|
||||||
acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
|
|
||||||
+ yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
|
|
||||||
acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
|
|
||||||
+ yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
|
|
||||||
}
|
|
||||||
sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
|
|
||||||
|
|
||||||
q += step;
|
|
||||||
h += step;
|
|
||||||
s += step;
|
|
||||||
dh += step/2;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
y += 8 * QK_K;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
for (int row = 0; row < 2; ++row) {
|
for (int row = 0; row < 2; ++row) {
|
||||||
const float tot = simd_sum(sumf[row]);
|
const float tot = simd_sum(sumf[row]);
|
||||||
@ -4280,7 +4001,6 @@ void kernel_mul_mv_q6_K_f32_impl(
|
|||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int tid = tiisg/2;
|
const int tid = tiisg/2;
|
||||||
const int ix = tiisg%2;
|
const int ix = tiisg%2;
|
||||||
const int ip = tid/8; // 0 or 1
|
const int ip = tid/8; // 0 or 1
|
||||||
@ -4316,30 +4036,6 @@ void kernel_mul_mv_q6_K_f32_impl(
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
|
||||||
const int ix = tiisg/4;
|
|
||||||
const int il = 4*(tiisg%4);
|
|
||||||
|
|
||||||
for (int i = ix; i < nb; i += 8) {
|
|
||||||
device const float * y = yy + i * QK_K + il;
|
|
||||||
device const uint8_t * ql = x[i].ql + il;
|
|
||||||
device const uint8_t * qh = x[i].qh + il;
|
|
||||||
device const int8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
const float d = x[i].d;
|
|
||||||
|
|
||||||
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
|
||||||
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
|
|
||||||
sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
|
|
||||||
sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
|
|
||||||
sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
|
|
||||||
}
|
|
||||||
sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
const float tot = simd_sum(sumf);
|
const float tot = simd_sum(sumf);
|
||||||
if (tiisg == 0) {
|
if (tiisg == 0) {
|
||||||
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
||||||
@ -5173,9 +4869,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||||||
|
|
||||||
device const float * y4 = y + 32 * ix;
|
device const float * y4 = y + 32 * ix;
|
||||||
|
|
||||||
#if QK_K != 64
|
|
||||||
iq1m_scale_t scale;
|
iq1m_scale_t scale;
|
||||||
#endif
|
|
||||||
|
|
||||||
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||||
|
|
||||||
@ -5196,10 +4890,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||||||
device const uint16_t * sc = (device const uint16_t *)xr->scales;
|
device const uint16_t * sc = (device const uint16_t *)xr->scales;
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
for (int row = 0; row < N_DST; row++) {
|
||||||
|
|
||||||
#if QK_K != 64
|
|
||||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
#endif
|
|
||||||
|
|
||||||
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||||
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
||||||
@ -5215,14 +4906,9 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
|||||||
}
|
}
|
||||||
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
#if QK_K == 64
|
|
||||||
const float d = (float) *((device const half *)(sc - 1));
|
|
||||||
sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
|
|
||||||
(sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
|
|
||||||
#else
|
|
||||||
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
|
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
|
||||||
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
|
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
|
||||||
#endif
|
|
||||||
|
|
||||||
sc += nb*sizeof(block_iq1_m)/2;
|
sc += nb*sizeof(block_iq1_m)/2;
|
||||||
qs += nb*sizeof(block_iq1_m);
|
qs += nb*sizeof(block_iq1_m);
|
||||||
@ -5334,7 +5020,6 @@ void kernel_mul_mv_iq4_nl_f32_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K != 64
|
|
||||||
void kernel_mul_mv_iq4_xs_f32_impl(
|
void kernel_mul_mv_iq4_xs_f32_impl(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
@ -5429,7 +5114,6 @@ void kernel_mul_mv_iq4_xs_f32_impl(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
||||||
kernel void kernel_mul_mv_iq1_s_f32(
|
kernel void kernel_mul_mv_iq1_s_f32(
|
||||||
@ -5542,11 +5226,7 @@ kernel void kernel_mul_mv_iq4_xs_f32(
|
|||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
#if QK_K == 64
|
|
||||||
kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
|
||||||
#else
|
|
||||||
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//============================= templates and their specializations =============================
|
//============================= templates and their specializations =============================
|
||||||
@ -5672,10 +5352,9 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
|
|||||||
float dl, ml;
|
float dl, ml;
|
||||||
uint8_t sc = xb->scales[il];
|
uint8_t sc = xb->scales[il];
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
q = q + 32*(il/8) + 16*(il&1);
|
q = q + 32*(il/8) + 16*(il&1);
|
||||||
il = (il/2)%4;
|
il = (il/2)%4;
|
||||||
#endif
|
|
||||||
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||||
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||||
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
|
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
|
||||||
@ -5691,7 +5370,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||||||
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
||||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
q = q + 32 * (il/8) + 16 * (il&1);
|
q = q + 32 * (il/8) + 16 * (il&1);
|
||||||
h = h + 16 * (il&1);
|
h = h + 16 * (il&1);
|
||||||
uint8_t m = 1 << (il/2);
|
uint8_t m = 1 << (il/2);
|
||||||
@ -5712,17 +5390,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
|
||||||
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
|
|
||||||
float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
|
|
||||||
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
|
||||||
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
|
||||||
uint8_t m = 1<<(il*2);
|
|
||||||
for (int i = 0; i < 16; ++i) {
|
|
||||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
||||||
@ -5734,7 +5401,6 @@ template <typename type4x4>
|
|||||||
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
||||||
device const uchar * q = xb->qs;
|
device const uchar * q = xb->qs;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
short is = (il/4) * 2;
|
short is = (il/4) * 2;
|
||||||
q = q + (il/4) * 32 + 16 * (il&1);
|
q = q + (il/4) * 32 + 16 * (il&1);
|
||||||
il = il & 3;
|
il = il & 3;
|
||||||
@ -5743,16 +5409,7 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg
|
|||||||
const float min = xb->dmin;
|
const float min = xb->dmin;
|
||||||
const float dl = d * sc[0];
|
const float dl = d * sc[0];
|
||||||
const float ml = min * sc[1];
|
const float ml = min * sc[1];
|
||||||
#else
|
|
||||||
(void) get_scale_min_k4_just2;
|
|
||||||
|
|
||||||
q = q + 16 * (il&1);
|
|
||||||
device const uint8_t * s = xb->scales;
|
|
||||||
device const half2 * dh = (device const half2 *)xb->d;
|
|
||||||
const float2 d = (float2)dh[0];
|
|
||||||
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
|
||||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
|
|
||||||
#endif
|
|
||||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
||||||
@ -5764,7 +5421,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||||||
device const uint8_t * q = xb->qs;
|
device const uint8_t * q = xb->qs;
|
||||||
device const uint8_t * qh = xb->qh;
|
device const uint8_t * qh = xb->qh;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
short is = (il/4) * 2;
|
short is = (il/4) * 2;
|
||||||
q = q + 32 * (il/4) + 16 * (il&1);
|
q = q + 32 * (il/4) + 16 * (il&1);
|
||||||
qh = qh + 16 * (il&1);
|
qh = qh + 16 * (il&1);
|
||||||
@ -5781,17 +5437,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||||||
for (int i = 0; i < 16; ++i) {
|
for (int i = 0; i < 16; ++i) {
|
||||||
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
q = q + 16 * (il&1);
|
|
||||||
device const int8_t * s = xb->scales;
|
|
||||||
const float dl = xb->d * s[il];
|
|
||||||
uint8_t m = 1<<(il*2);
|
|
||||||
const float coef = il<2 ? 1.f : 1.f/16.f;
|
|
||||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
|
||||||
for (int i = 0; i < 16; ++i) {
|
|
||||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
@ -5801,15 +5446,11 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
|
|||||||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||||
qh = qh + 32*(il/8) + 16*(il&1);
|
qh = qh + 32*(il/8) + 16*(il&1);
|
||||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
float sc = scales[(il%2) + 2 * ((il/2))];
|
||||||
il = (il/2) & 3;
|
il = (il/2) & 3;
|
||||||
#else
|
|
||||||
ql = ql + 16 * (il&1);
|
|
||||||
float sc = scales[il];
|
|
||||||
#endif
|
|
||||||
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||||
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
const float coef = il>1 ? 1.f/16.f : 1.f;
|
||||||
@ -5966,20 +5607,15 @@ void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 &
|
|||||||
const int ib32 = il/2;
|
const int ib32 = il/2;
|
||||||
il = il%2;
|
il = il%2;
|
||||||
device const uint16_t * sc = (device const uint16_t *)xb->scales;
|
device const uint16_t * sc = (device const uint16_t *)xb->scales;
|
||||||
#if QK_K == 64
|
|
||||||
const float d = xb->d;
|
|
||||||
#else
|
|
||||||
iq1m_scale_t scale;
|
iq1m_scale_t scale;
|
||||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
const float d = scale.f16;
|
const float d = scale.f16;
|
||||||
#endif
|
|
||||||
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
||||||
device const uint8_t * qh = xb->qh + 2*ib32 + il;
|
device const uint8_t * qh = xb->qh + 2*ib32 + il;
|
||||||
#if QK_K == 64
|
|
||||||
const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
|
|
||||||
#else
|
|
||||||
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
|
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
|
||||||
#endif
|
|
||||||
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
||||||
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
||||||
@ -6009,9 +5645,6 @@ void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4
|
|||||||
|
|
||||||
template <typename type4x4>
|
template <typename type4x4>
|
||||||
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
|
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
|
||||||
#if QK_K == 64
|
|
||||||
dequantize_iq4_nl(xb, il, reg);
|
|
||||||
#else
|
|
||||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||||
const int ib32 = il/2;
|
const int ib32 = il/2;
|
||||||
il = il%2;
|
il = il%2;
|
||||||
@ -6028,7 +5661,6 @@ void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4
|
|||||||
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
||||||
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||||
@ -6533,11 +6165,7 @@ kernel void kernel_mul_mm_id(
|
|||||||
sgitg);
|
sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
#define QK_NL 16
|
#define QK_NL 16
|
||||||
#else
|
|
||||||
#define QK_NL 4
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// get rows
|
// get rows
|
||||||
@ -6577,11 +6205,7 @@ template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_r
|
|||||||
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
|
||||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
|
|
||||||
#else
|
|
||||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||||
#endif
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// matrix-matrix multiplication
|
// matrix-matrix multiplication
|
||||||
@ -6609,11 +6233,7 @@ template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_m
|
|||||||
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
|
||||||
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
|
|
||||||
#else
|
|
||||||
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||||
#endif
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// indirect matrix-matrix multiplication
|
// indirect matrix-matrix multiplication
|
||||||
@ -6641,11 +6261,7 @@ template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel
|
|||||||
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
||||||
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||||
#if QK_K == 64
|
|
||||||
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
|
|
||||||
#else
|
|
||||||
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||||
#endif
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// matrix-vector multiplication
|
// matrix-vector multiplication
|
||||||
@ -6854,7 +6470,5 @@ template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t
|
|||||||
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
|
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
|
||||||
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
|
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
|
||||||
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
|
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
|
||||||
#if QK_K != 64
|
|
||||||
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
|
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
|
||||||
#endif
|
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
|
2674
ggml-quants.c
2674
ggml-quants.c
File diff suppressed because it is too large
Load Diff
472
ggml-sycl.cpp
472
ggml-sycl.cpp
@ -4197,7 +4197,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
const block_q2_K * x = (const block_q2_K *) vx;
|
const block_q2_K * x = (const block_q2_K *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int n = tid/32;
|
const int n = tid/32;
|
||||||
const int l = tid - 32*n;
|
const int l = tid - 32*n;
|
||||||
const int is = 8*n + l/16;
|
const int is = 8*n + l/16;
|
||||||
@ -4211,18 +4210,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
||||||
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
||||||
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
||||||
#else
|
|
||||||
const int is = tid/16; // 0 or 1
|
|
||||||
const int il = tid%16; // 0...15
|
|
||||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
||||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
||||||
|
|
||||||
float dall = x[i].dm[0];
|
|
||||||
float dmin = x[i].dm[1];
|
|
||||||
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
|
||||||
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4232,7 +4219,6 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
const int i = item_ct1.get_group(2);
|
const int i = item_ct1.get_group(2);
|
||||||
const block_q3_K * x = (const block_q3_K *) vx;
|
const block_q3_K * x = (const block_q3_K *) vx;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int r = item_ct1.get_local_id(2) / 4;
|
const int r = item_ct1.get_local_id(2) / 4;
|
||||||
const int tid = r/2;
|
const int tid = r/2;
|
||||||
const int is0 = r%2;
|
const int is0 = r%2;
|
||||||
@ -4256,31 +4242,8 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
const uint8_t * hm = x[i].hmask;
|
const uint8_t * hm = x[i].hmask;
|
||||||
|
|
||||||
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
|
||||||
const int is = tid/16; // 0 or 1
|
|
||||||
const int il = tid%16; // 0...15
|
|
||||||
const int im = il/8; // 0...1
|
|
||||||
const int in = il%8; // 0...7
|
|
||||||
|
|
||||||
dst_t * y = yy + i*QK_K + 16*is + il;
|
|
||||||
|
|
||||||
const uint8_t q = x[i].qs[il] >> (2*is);
|
|
||||||
const uint8_t h = x[i].hmask[in] >> (2*is + im);
|
|
||||||
const float d = (float)x[i].d;
|
|
||||||
|
|
||||||
if (is == 0) {
|
|
||||||
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
||||||
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
||||||
} else {
|
|
||||||
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
|
|
||||||
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
||||||
if (j < 4) {
|
if (j < 4) {
|
||||||
d = q[j] & 63; m = q[j + 4] & 63;
|
d = q[j] & 63; m = q[j + 4] & 63;
|
||||||
@ -4289,7 +4252,6 @@ static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8
|
|||||||
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
|
||||||
@ -4298,7 +4260,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
|
|
||||||
const int i = item_ct1.get_group(2);
|
const int i = item_ct1.get_group(2);
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
// assume 32 threads
|
// assume 32 threads
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
const int il = tid/8;
|
const int il = tid/8;
|
||||||
@ -4322,15 +4283,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
||||||
y[l +32] = d2 * (q[l] >> 4) - m2;
|
y[l +32] = d2 * (q[l] >> 4) - m2;
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
|
||||||
const uint8_t * q = x[i].qs;
|
|
||||||
dst_t * y = yy + i*QK_K;
|
|
||||||
const float d = (float)x[i].dm[0];
|
|
||||||
const float m = (float)x[i].dm[1];
|
|
||||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
|
||||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4340,7 +4292,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
|
|
||||||
const int i = item_ct1.get_group(2);
|
const int i = item_ct1.get_group(2);
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
// assume 64 threads - this is very slightly better than the one below
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
const int il = tid/16; // il is in 0...3
|
const int il = tid/16; // il is in 0...3
|
||||||
@ -4367,18 +4318,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
hm <<= 1;
|
hm <<= 1;
|
||||||
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
||||||
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
|
||||||
const uint8_t q = x[i].qs[tid];
|
|
||||||
const int im = tid/8; // 0...3
|
|
||||||
const int in = tid%8; // 0...7
|
|
||||||
const int is = tid/16; // 0 or 1
|
|
||||||
const uint8_t h = x[i].qh[in] >> im;
|
|
||||||
const float d = x[i].d;
|
|
||||||
dst_t * y = yy + i*QK_K + tid;
|
|
||||||
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
|
|
||||||
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4387,7 +4326,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
const block_q6_K * x = (const block_q6_K *) vx;
|
const block_q6_K * x = (const block_q6_K *) vx;
|
||||||
|
|
||||||
const int i = item_ct1.get_group(2);
|
const int i = item_ct1.get_group(2);
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
// assume 64 threads - this is very slightly better than the one below
|
// assume 64 threads - this is very slightly better than the one below
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
@ -4407,24 +4345,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
|
|||||||
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
||||||
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
||||||
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
||||||
#else
|
|
||||||
|
|
||||||
// assume 32 threads
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
|
||||||
const int ip = tid/16; // 0 or 1
|
|
||||||
const int il = tid - 16*ip; // 0...15
|
|
||||||
|
|
||||||
dst_t * y = yy + i*QK_K + 16*ip + il;
|
|
||||||
|
|
||||||
const float d = x[i].d;
|
|
||||||
|
|
||||||
const uint8_t ql = x[i].ql[16*ip + il];
|
|
||||||
const uint8_t qh = x[i].qh[il] >> (2*ip);
|
|
||||||
const int8_t * sc = x[i].scales;
|
|
||||||
|
|
||||||
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
||||||
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4438,7 +4358,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res
|
|||||||
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4449,10 +4368,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res
|
|||||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
||||||
const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
|
const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
|
||||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4466,7 +4381,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest
|
|||||||
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4475,10 +4389,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest
|
|||||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
||||||
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -4490,7 +4400,6 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
const block_iq2_s * x = (const block_iq2_s *) vx;
|
const block_iq2_s * x = (const block_iq2_s *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4498,13 +4407,9 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
||||||
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int j = 0; j < 8; ++j)
|
for (int j = 0; j < 8; ++j) {
|
||||||
y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
||||||
#else
|
}
|
||||||
assert(false);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename dst_t>
|
template<typename dst_t>
|
||||||
@ -4518,7 +4423,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res
|
|||||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4533,10 +4437,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res
|
|||||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -4549,7 +4449,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
const block_iq3_s * x = (const block_iq3_s *) vx;
|
const block_iq3_s * x = (const block_iq3_s *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4563,10 +4462,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -4579,7 +4474,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
const block_iq1_s * x = (const block_iq1_s *) vx;
|
const block_iq1_s * x = (const block_iq1_s *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4593,10 +4487,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
for (int j = 0; j < 8; ++j) {
|
for (int j = 0; j < 8; ++j) {
|
||||||
y[j] = d * (q[j] + delta);
|
y[j] = d * (q[j] + delta);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -4609,7 +4499,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
const block_iq1_m * x = (const block_iq1_m *) vx;
|
const block_iq1_m * x = (const block_iq1_m *) vx;
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2);
|
const int tid = item_ct1.get_local_id(2);
|
||||||
#if QK_K == 256
|
|
||||||
const int il = tid/8; // 0...3
|
const int il = tid/8; // 0...3
|
||||||
const int ib = tid%8; // 0...7
|
const int ib = tid%8; // 0...7
|
||||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||||
@ -4627,10 +4516,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
|
|||||||
for (int j = 0; j < 8; ++j) {
|
for (int j = 0; j < 8; ++j) {
|
||||||
y[j] = d * (q[j] + delta);
|
y[j] = d * (q[j] + delta);
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -4704,7 +4589,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const int tid =
|
const int tid =
|
||||||
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||||
const int ix =
|
const int ix =
|
||||||
@ -4755,42 +4639,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
|
|||||||
tmp += dall * sum1 - dmin * sum2;
|
tmp += dall * sum1 - dmin * sum2;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2) /
|
|
||||||
(2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
||||||
const int ix = item_ct1.get_local_id(2) %
|
|
||||||
(2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
||||||
const int offset = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
uint32_t uaux[2];
|
|
||||||
const uint8_t * d = (const uint8_t *)uaux;
|
|
||||||
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + offset;
|
|
||||||
const uint8_t * q = x[i].qs + offset;
|
|
||||||
const uint32_t * s = (const uint32_t *)x[i].scales;
|
|
||||||
|
|
||||||
uaux[0] = s[0] & 0x0f0f0f0f;
|
|
||||||
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
|
||||||
|
|
||||||
const sycl::float2 dall =
|
|
||||||
x[i].dm.convert<float, sycl::rounding_mode::automatic>();
|
|
||||||
|
|
||||||
float sum1 = 0, sum2 = 0;
|
|
||||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
||||||
const uint8_t ql = q[l];
|
|
||||||
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
|
||||||
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
|
||||||
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
|
||||||
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
|
||||||
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
|
||||||
}
|
|
||||||
tmp += dall.x() * sum1 - dall.y() * sum2;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -4828,8 +4676,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x0303;
|
const uint16_t kmask1 = 0x0303;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
@ -4882,34 +4728,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
|
|||||||
tmp += d * sum;
|
tmp += d * sum;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
|
||||||
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
|
||||||
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
|
||||||
const int in = offset/8; // 0 or 1
|
|
||||||
const int im = offset%8; // 0...7
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + offset;
|
|
||||||
const uint8_t * q = x[i].qs + offset;
|
|
||||||
const uint8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
const float dall = (float)x[i].d;
|
|
||||||
|
|
||||||
float sum = 0;
|
|
||||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
||||||
const uint8_t hl = x[i].hmask[im+l] >> in;
|
|
||||||
const uint8_t ql = q[l];
|
|
||||||
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
|
||||||
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
|
||||||
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
|
||||||
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -4944,7 +4762,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
|
|||||||
|
|
||||||
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const uint16_t kmask1 = 0x3f3f;
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
const uint16_t kmask3 = 0xc0c0;
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
@ -5033,36 +4850,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
||||||
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
|
|
||||||
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
uint16_t aux16[2];
|
|
||||||
const uint8_t * s = (const uint8_t *)aux16;
|
|
||||||
|
|
||||||
float tmp = 0;
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
const uint8_t * q = x[i].qs + step;
|
|
||||||
const float * y = yy + i*QK_K + step;
|
|
||||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
||||||
aux16[0] = a[0] & 0x0f0f;
|
|
||||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
||||||
const float d = (float)x[i].dm[0];
|
|
||||||
const float m = (float)x[i].dm[1];
|
|
||||||
float sum = 0.f;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
|
||||||
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
|
||||||
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
|
||||||
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -5097,7 +4884,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
|
|||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
float tmp = 0; // partial sum for thread in warp
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const uint16_t kmask1 = 0x3f3f;
|
const uint16_t kmask1 = 0x3f3f;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
const uint16_t kmask3 = 0xc0c0;
|
const uint16_t kmask3 = 0xc0c0;
|
||||||
@ -5174,30 +4960,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
|
|||||||
dmin * smin;
|
dmin * smin;
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
|
||||||
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
|
|
||||||
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
const int im = step/8;
|
|
||||||
const int in = step%8;
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
const uint8_t * q = x[i].qs + step;
|
|
||||||
const int8_t * s = x[i].scales;
|
|
||||||
const float * y = yy + i*QK_K + step;
|
|
||||||
const float d = x[i].d;
|
|
||||||
float sum = 0.f;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
const uint8_t h = x[i].qh[in+j] >> im;
|
|
||||||
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
|
||||||
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
|
||||||
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
|
||||||
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
@ -5224,8 +4986,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
|
|||||||
|
|
||||||
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const int tid =
|
const int tid =
|
||||||
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||||
const int ix =
|
const int ix =
|
||||||
@ -5282,37 +5042,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...7
|
|
||||||
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0...3
|
|
||||||
|
|
||||||
const int step = tid * K_QUANTS_PER_ITERATION;
|
|
||||||
|
|
||||||
float tmp = 0; // partial sum for thread in warp
|
|
||||||
|
|
||||||
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
|
||||||
|
|
||||||
const float * y = yy + i * QK_K + step;
|
|
||||||
const uint8_t * ql = x[i].ql + step;
|
|
||||||
const uint8_t * qh = x[i].qh + step;
|
|
||||||
const int8_t * s = x[i].scales;
|
|
||||||
|
|
||||||
const float d = x[i+0].d;
|
|
||||||
|
|
||||||
float sum = 0;
|
|
||||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
|
||||||
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
|
||||||
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
|
||||||
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
|
||||||
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
|
||||||
}
|
|
||||||
tmp += sum;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||||
@ -6857,7 +6586,6 @@ static __dpct_inline__ float
|
|||||||
vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
|
vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
||||||
|
|
||||||
#ifndef GGML_QKK_64
|
|
||||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||||||
|
|
||||||
int v[2];
|
int v[2];
|
||||||
@ -6899,52 +6627,6 @@ vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
|
|||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
|
|
||||||
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
|
||||||
|
|
||||||
float sumf_d = 0.0f;
|
|
||||||
float sumf_m = 0.0f;
|
|
||||||
|
|
||||||
uint16_t aux16[2];
|
|
||||||
const uint8_t * s = (const uint8_t *)aux16;
|
|
||||||
|
|
||||||
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
|
||||||
aux16[0] = a[0] & 0x0f0f;
|
|
||||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
|
||||||
|
|
||||||
const float dall = bq4_K->dm[0];
|
|
||||||
const float dmin = bq4_K->dm[1];
|
|
||||||
|
|
||||||
const float d8_1 = bq8_1[0].ds[0];
|
|
||||||
const float d8_2 = bq8_1[1].ds[1];
|
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
||||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
||||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
||||||
|
|
||||||
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
|
||||||
const int v1 = q4[0];
|
|
||||||
const int v2 = q4[4];
|
|
||||||
|
|
||||||
const int dot1 = dpct::dp4a(ui2, v2 & 0x0f0f0f0f, dpct::dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
|
||||||
const int dot2 = dpct::dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, dpct::dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
|
||||||
const int dot3 = dpct::dp4a(0x01010101, ui2, dpct::dp4a(0x01010101, ui1, 0));
|
|
||||||
const int dot4 = dpct::dp4a(0x01010101, ui4, dpct::dp4a(0x01010101, ui3, 0));
|
|
||||||
|
|
||||||
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
|
||||||
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
|
||||||
|
|
||||||
return dall * sumf_d - dmin * sumf_m;
|
|
||||||
|
|
||||||
#else
|
|
||||||
bad_arch();
|
|
||||||
#endif // __SYCL_ARCH__ >= VER_4VEC
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int mmq_y>
|
template <int mmq_y>
|
||||||
@ -7003,11 +6685,7 @@ load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|||||||
|
|
||||||
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
||||||
#else
|
|
||||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -7050,7 +6728,6 @@ static __dpct_inline__ float
|
|||||||
vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
|
vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
||||||
|
|
||||||
#ifndef GGML_QKK_64
|
|
||||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||||||
|
|
||||||
int vl[2];
|
int vl[2];
|
||||||
@ -7092,48 +6769,6 @@ vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
|
|||||||
}
|
}
|
||||||
|
|
||||||
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
|
|
||||||
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
|
||||||
|
|
||||||
const int8_t * s = bq5_K->scales;
|
|
||||||
|
|
||||||
const float d = bq5_K->d;
|
|
||||||
|
|
||||||
const float d8_1 = bq8_1[0].ds[0];
|
|
||||||
const float d8_2 = bq8_1[1].ds[1];
|
|
||||||
|
|
||||||
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
|
||||||
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
|
||||||
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
|
||||||
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
|
||||||
|
|
||||||
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
|
||||||
const int vl1 = ql[0];
|
|
||||||
const int vl2 = ql[4];
|
|
||||||
|
|
||||||
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
|
||||||
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
|
||||||
const int in = step%8; // 0, 4, 0, 4
|
|
||||||
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
|
||||||
|
|
||||||
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
|
||||||
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
|
||||||
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
|
||||||
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
|
||||||
|
|
||||||
const float sumf_d = d8_1 * (dpct::dp4a(ui1, v1, 0) * s[0] + dpct::dp4a(ui2, v2, 0) * s[1])
|
|
||||||
+ d8_2 * (dpct::dp4a(ui3, v3, 0) * s[2] + dpct::dp4a(ui4, v4, 0) * s[3]);
|
|
||||||
|
|
||||||
return d * sumf_d;
|
|
||||||
|
|
||||||
#else
|
|
||||||
bad_arch();
|
|
||||||
#endif // __SYCL_ARCH__ >= VER_4VEC
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int mmq_y>
|
template <int mmq_y>
|
||||||
@ -7205,9 +6840,7 @@ load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
|
|||||||
|
|
||||||
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
@ -7387,7 +7020,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
|
|||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
||||||
const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
|
const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
|
||||||
const uint8_t *kmask_iq2xs) {
|
const uint8_t *kmask_iq2xs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
||||||
|
|
||||||
#if QR2_XXS == 8
|
#if QR2_XXS == 8
|
||||||
@ -7428,10 +7060,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
|
|||||||
}
|
}
|
||||||
return d * (sumi1 + sumi2);
|
return d * (sumi1 + sumi2);
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
return 0.f;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
@ -7440,7 +7068,6 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
|
|||||||
const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
|
const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
|
||||||
#if DPCT_COMPATIBILITY_TEMP >= \
|
#if DPCT_COMPATIBILITY_TEMP >= \
|
||||||
MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7478,16 +7105,11 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
|
|||||||
assert(false);
|
assert(false);
|
||||||
return 0.f;
|
return 0.f;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
return 0.f;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
|
vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7531,9 +7153,6 @@ vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
|
|||||||
}
|
}
|
||||||
const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
|
const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
|
||||||
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
@ -7542,7 +7161,6 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
|
|||||||
const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
|
const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
|
||||||
#if DPCT_COMPATIBILITY_TEMP >= \
|
#if DPCT_COMPATIBILITY_TEMP >= \
|
||||||
MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7570,17 +7188,12 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
|
|||||||
assert(false);
|
assert(false);
|
||||||
return 0.f;
|
return 0.f;
|
||||||
#endif
|
#endif
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
return 0.f;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
|
vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
||||||
const uint32_t *iq3s_grid) {
|
const uint32_t *iq3s_grid) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7609,16 +7222,12 @@ vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
|
|||||||
(1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
|
(1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
|
||||||
bq8_1[ib32].ds[0];
|
bq8_1[ib32].ds[0];
|
||||||
return d * sumi;
|
return d * sumi;
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
|
vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
|
||||||
const uint32_t *iq1s_grid_gpu) {
|
const uint32_t *iq1s_grid_gpu) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7637,15 +7246,11 @@ vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
|
|||||||
const float d = d1q * bq8_1[ib32].ds[0];
|
const float d = d1q * bq8_1[ib32].ds[0];
|
||||||
const float m = d1q * bq8_1[ib32].ds[1];
|
const float m = d1q * bq8_1[ib32].ds[1];
|
||||||
return d * sumi + m * delta;
|
return d * sumi + m * delta;
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ float
|
static __dpct_inline__ float
|
||||||
vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
|
vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
||||||
|
|
||||||
const int ib32 = iqs;
|
const int ib32 = iqs;
|
||||||
@ -7670,9 +7275,6 @@ vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
|
|||||||
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||||||
const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
|
const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
|
||||||
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
|
static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
|
||||||
@ -7720,7 +7322,6 @@ static __dpct_inline__ float
|
|||||||
vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
|
vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
|
||||||
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||||||
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||||||
|
|
||||||
@ -7738,9 +7339,6 @@ vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
|
|||||||
sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
|
sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
|
||||||
}
|
}
|
||||||
return d * (sumi1 + sumi2);
|
return d * (sumi1 + sumi2);
|
||||||
#else
|
|
||||||
assert(false);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
|
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
|
||||||
@ -10203,7 +9801,6 @@ template <typename dst_t>
|
|||||||
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
||||||
dpct::queue_ptr stream) {
|
dpct::queue_ptr stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
{
|
{
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
dpct::has_capability_or_fail(stream->get_device(),
|
||||||
{sycl::aspect::fp16});
|
{sycl::aspect::fp16});
|
||||||
@ -10215,27 +9812,12 @@ static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
|
|||||||
dequantize_block_q2_K(vx, y, item_ct1);
|
dequantize_block_q2_K(vx, y, item_ct1);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
{
|
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
|
||||||
{sycl::aspect::fp16});
|
|
||||||
|
|
||||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
||||||
sycl::range<3>(1, 1, 32),
|
|
||||||
sycl::range<3>(1, 1, 32)),
|
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
|
||||||
dequantize_block_q2_K(vx, y, item_ct1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
||||||
dpct::queue_ptr stream) {
|
dpct::queue_ptr stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
{
|
{
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
dpct::has_capability_or_fail(stream->get_device(),
|
||||||
{sycl::aspect::fp16});
|
{sycl::aspect::fp16});
|
||||||
@ -10247,19 +9829,6 @@ static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
|
|||||||
dequantize_block_q3_K(vx, y, item_ct1);
|
dequantize_block_q3_K(vx, y, item_ct1);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
{
|
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
|
||||||
{sycl::aspect::fp16});
|
|
||||||
|
|
||||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
||||||
sycl::range<3>(1, 1, 32),
|
|
||||||
sycl::range<3>(1, 1, 32)),
|
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
|
||||||
dequantize_block_q3_K(vx, y, item_ct1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -10320,7 +9889,6 @@ template <typename dst_t>
|
|||||||
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
||||||
dpct::queue_ptr stream) {
|
dpct::queue_ptr stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
{
|
{
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
dpct::has_capability_or_fail(stream->get_device(),
|
||||||
{sycl::aspect::fp16});
|
{sycl::aspect::fp16});
|
||||||
@ -10332,27 +9900,12 @@ static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
|
|||||||
dequantize_block_q5_K(vx, y, item_ct1);
|
dequantize_block_q5_K(vx, y, item_ct1);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
{
|
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
|
||||||
{sycl::aspect::fp16});
|
|
||||||
|
|
||||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
||||||
sycl::range<3>(1, 1, 32),
|
|
||||||
sycl::range<3>(1, 1, 32)),
|
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
|
||||||
dequantize_block_q5_K(vx, y, item_ct1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
||||||
dpct::queue_ptr stream) {
|
dpct::queue_ptr stream) {
|
||||||
const int nb = k / QK_K;
|
const int nb = k / QK_K;
|
||||||
#if QK_K == 256
|
|
||||||
{
|
{
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
dpct::has_capability_or_fail(stream->get_device(),
|
||||||
{sycl::aspect::fp16});
|
{sycl::aspect::fp16});
|
||||||
@ -10364,20 +9917,6 @@ static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
|
|||||||
dequantize_block_q6_K(vx, y, item_ct1);
|
dequantize_block_q6_K(vx, y, item_ct1);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
{
|
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
|
||||||
{sycl::aspect::fp16});
|
|
||||||
|
|
||||||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
|
|
||||||
sycl::range<3>(1, 1, 32),
|
|
||||||
sycl::range<3>(1, 1, 32)),
|
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
|
||||||
dequantize_block_q6_K(vx, y, item_ct1);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename dst_t>
|
template <typename dst_t>
|
||||||
@ -10529,9 +10068,6 @@ template <typename dst_t>
|
|||||||
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
|
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
|
||||||
dpct::queue_ptr stream) {
|
dpct::queue_ptr stream) {
|
||||||
const int nb = (k + QK_K - 1) / QK_K;
|
const int nb = (k + QK_K - 1) / QK_K;
|
||||||
#if QK_K == 64
|
|
||||||
dequantize_row_iq4_nl_sycl(vx, y, k, stream);
|
|
||||||
#else
|
|
||||||
{
|
{
|
||||||
dpct::has_capability_or_fail(stream->get_device(),
|
dpct::has_capability_or_fail(stream->get_device(),
|
||||||
{sycl::aspect::fp16});
|
{sycl::aspect::fp16});
|
||||||
@ -10546,7 +10082,6 @@ static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
|
|||||||
});
|
});
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -12051,8 +11586,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
|||||||
const int nrows_y, const int nrows_dst,
|
const int nrows_y, const int nrows_dst,
|
||||||
dpct::queue_ptr stream) try {
|
dpct::queue_ptr stream) try {
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
int id;
|
int id;
|
||||||
SYCL_CHECK(
|
SYCL_CHECK(
|
||||||
CHECK_TRY_ERROR(id = get_current_device_id()));
|
CHECK_TRY_ERROR(id = get_current_device_id()));
|
||||||
@ -12167,7 +11700,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
catch (sycl::exception const &exc) {
|
catch (sycl::exception const &exc) {
|
||||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||||
|
File diff suppressed because it is too large
Load Diff
259
ggml-vulkan.cpp
259
ggml-vulkan.cpp
@ -290,6 +290,7 @@ struct vk_op_rope_neox_push_constants {
|
|||||||
float corr_dims[4];
|
float corr_dims[4];
|
||||||
float theta_scale;
|
float theta_scale;
|
||||||
float inv_ndims;
|
float inv_ndims;
|
||||||
|
uint32_t has_freq_facs;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct vk_op_soft_max_push_constants {
|
struct vk_op_soft_max_push_constants {
|
||||||
@ -1522,8 +1523,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
|||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
|
||||||
}
|
}
|
||||||
@ -3732,7 +3733,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
|
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
|
||||||
switch (op) {
|
switch (op) {
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
@ -3853,6 +3854,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||||||
default:
|
default:
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
GGML_UNUSED(src2);
|
||||||
}
|
}
|
||||||
|
|
||||||
static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
|
static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
|
||||||
@ -3880,12 +3883,15 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename PC>
|
template<typename PC>
|
||||||
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
}
|
}
|
||||||
|
if (src2 != nullptr) {
|
||||||
|
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
|
||||||
|
}
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
||||||
@ -3896,6 +3902,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
const uint64_t ne02 = src0->ne[2];
|
const uint64_t ne02 = src0->ne[2];
|
||||||
const uint64_t ne03 = src0->ne[3];
|
const uint64_t ne03 = src0->ne[3];
|
||||||
const uint64_t ne0 = ne00 * ne01;
|
const uint64_t ne0 = ne00 * ne01;
|
||||||
|
|
||||||
const bool use_src1 = src1 != nullptr;
|
const bool use_src1 = src1 != nullptr;
|
||||||
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
|
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
|
||||||
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
|
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
|
||||||
@ -3904,7 +3911,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
const uint64_t ne1 = ne10 * ne11;
|
const uint64_t ne1 = ne10 * ne11;
|
||||||
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
|
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
|
||||||
|
|
||||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
|
const bool use_src2 = src2 != nullptr;
|
||||||
|
const uint64_t ne20 = use_src2 ? src2->ne[0] : 0;
|
||||||
|
const uint64_t ne21 = use_src2 ? src2->ne[1] : 0;
|
||||||
|
const uint64_t ne22 = use_src2 ? src2->ne[2] : 0;
|
||||||
|
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
|
||||||
|
const uint64_t ne2 = ne20 * ne21;
|
||||||
|
|
||||||
|
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
|
||||||
ggml_vk_func_t op_func;
|
ggml_vk_func_t op_func;
|
||||||
|
|
||||||
if (pipeline == nullptr) {
|
if (pipeline == nullptr) {
|
||||||
@ -3927,15 +3941,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||||
|
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
|
||||||
|
|
||||||
vk_buffer d_X = nullptr;
|
vk_buffer d_X = nullptr;
|
||||||
size_t x_buf_offset = 0;
|
size_t x_buf_offset = 0;
|
||||||
vk_buffer d_Y = nullptr;
|
vk_buffer d_Y = nullptr;
|
||||||
size_t y_buf_offset = 0;
|
size_t y_buf_offset = 0;
|
||||||
vk_buffer d_Z = nullptr;
|
vk_buffer d_Z = nullptr;
|
||||||
|
size_t z_buf_offset = 0;
|
||||||
|
|
||||||
bool src0_uma = false;
|
bool src0_uma = false;
|
||||||
bool src1_uma = false;
|
bool src1_uma = false;
|
||||||
|
bool src2_uma = false;
|
||||||
|
|
||||||
if (ctx->device->uma) {
|
if (ctx->device->uma) {
|
||||||
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
|
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
|
||||||
@ -3944,10 +3961,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
|
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
|
||||||
src1_uma = d_Y != nullptr;
|
src1_uma = d_Y != nullptr;
|
||||||
}
|
}
|
||||||
|
if (use_src2) {
|
||||||
|
ggml_vk_host_get(ctx, src2->data, d_Z, z_buf_offset);
|
||||||
|
src2_uma = d_Z != nullptr;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
||||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||||
|
uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||||
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
||||||
|
|
||||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||||
@ -3970,10 +3992,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
y_buf_offset = extra_src1->offset;
|
y_buf_offset = extra_src1->offset;
|
||||||
GGML_ASSERT(d_Y != nullptr);
|
GGML_ASSERT(d_Y != nullptr);
|
||||||
}
|
}
|
||||||
|
if (use_src2 && !src2_uma) {
|
||||||
|
d_Z = extra_src2->buffer_gpu.lock();
|
||||||
|
z_buf_offset = extra_src2->offset;
|
||||||
|
GGML_ASSERT(d_Z != nullptr);
|
||||||
|
}
|
||||||
|
|
||||||
if (op_supports_incontiguous) {
|
if (op_supports_incontiguous) {
|
||||||
x_sz = ggml_nbytes(src0);
|
x_sz = ggml_nbytes(src0);
|
||||||
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
||||||
|
z_sz = use_src2 ? ggml_nbytes(src2) : 0;
|
||||||
d_sz = ggml_nbytes(dst);
|
d_sz = ggml_nbytes(dst);
|
||||||
|
|
||||||
if (x_buf_offset + x_sz >= d_X->size) {
|
if (x_buf_offset + x_sz >= d_X->size) {
|
||||||
@ -3982,6 +4010,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
|
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
|
||||||
y_sz = VK_WHOLE_SIZE;
|
y_sz = VK_WHOLE_SIZE;
|
||||||
}
|
}
|
||||||
|
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
|
||||||
|
z_sz = VK_WHOLE_SIZE;
|
||||||
|
}
|
||||||
if (d_buf_offset + d_sz >= d_D->size) {
|
if (d_buf_offset + d_sz >= d_D->size) {
|
||||||
d_sz = VK_WHOLE_SIZE;
|
d_sz = VK_WHOLE_SIZE;
|
||||||
}
|
}
|
||||||
@ -4021,13 +4052,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
|
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
|
||||||
y_sz *= ne12 * ne13;
|
y_sz *= ne12 * ne13;
|
||||||
}
|
}
|
||||||
|
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
|
||||||
|
z_sz *= ne22 * ne23;
|
||||||
|
}
|
||||||
if (d_sz != VK_WHOLE_SIZE) {
|
if (d_sz != VK_WHOLE_SIZE) {
|
||||||
d_sz *= ne02 * ne03;
|
d_sz *= ne02 * ne03;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (op == GGML_OP_SOFT_MAX) {
|
if (op == GGML_OP_SOFT_MAX) {
|
||||||
// Empty src1 is possible on soft_max, but the shader needs a buffer
|
// Empty src1 is possible in soft_max, but the shader needs a buffer
|
||||||
vk_subbuffer subbuf_y;
|
vk_subbuffer subbuf_y;
|
||||||
if (use_src1) {
|
if (use_src1) {
|
||||||
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
||||||
@ -4037,6 +4071,28 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
|
} else if (op == GGML_OP_ROPE) {
|
||||||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
|
const bool is_neox = mode & 2;
|
||||||
|
|
||||||
|
if (is_neox) {
|
||||||
|
// Empty src2 is possible in rope, but the shader needs a buffer
|
||||||
|
vk_subbuffer subbuf_z;
|
||||||
|
if (use_src2) {
|
||||||
|
subbuf_z = { d_Z, z_buf_offset, z_sz };
|
||||||
|
} else {
|
||||||
|
subbuf_z = { d_X, 0, d_X->size };
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_vk_sync_buffers(subctx);
|
||||||
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
|
} else {
|
||||||
|
ggml_vk_sync_buffers(subctx);
|
||||||
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
|
}
|
||||||
|
} else if (use_src2) {
|
||||||
|
ggml_vk_sync_buffers(subctx);
|
||||||
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (use_src1) {
|
} else if (use_src1) {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
@ -4047,6 +4103,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
||||||
GGML_ASSERT(op != GGML_OP_ARGSORT);
|
GGML_ASSERT(op != GGML_OP_ARGSORT);
|
||||||
|
GGML_ASSERT(!use_src2);
|
||||||
|
|
||||||
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
|
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
|
||||||
|
|
||||||
@ -4088,7 +4145,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -4096,7 +4153,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4111,7 +4168,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4126,7 +4183,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4141,7 +4198,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4154,7 +4211,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4168,7 +4225,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4183,7 +4240,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4195,21 +4252,21 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
float * op_params = (float *)dst->op_params;
|
float * op_params = (float *)dst->op_params;
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
float * op_params = (float *)dst->op_params;
|
float * op_params = (float *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
int32_t * op_params = (int32_t *)dst->op_params;
|
int32_t * op_params = (int32_t *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -4228,7 +4285,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, {
|
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
|
||||||
ncols,
|
ncols,
|
||||||
src1 != nullptr ? nrows_y : (uint32_t)0,
|
src1 != nullptr ? nrows_y : (uint32_t)0,
|
||||||
scale, max_bias,
|
scale, max_bias,
|
||||||
@ -4237,11 +4294,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
||||||
#pragma message("TODO: implement phi3 frequency factors support")
|
|
||||||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
|
||||||
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
|
||||||
|
|
||||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
const int mode = ((int32_t *) dst->op_params)[2];
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
// const int n_ctx = ((int32_t *) dst->op_params)[3];
|
// const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
@ -4264,12 +4317,13 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
|||||||
if (is_neox) {
|
if (is_neox) {
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float inv_ndims = -1.0f / n_dims;
|
const float inv_ndims = -1.0f / n_dims;
|
||||||
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
|
||||||
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
|
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
|
||||||
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims
|
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims,
|
||||||
|
src2 != nullptr,
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
|
||||||
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
|
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
|
||||||
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
|
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
|
||||||
});
|
});
|
||||||
@ -4292,7 +4346,7 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
|
|
||||||
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
|
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, {
|
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
|
||||||
ncols,
|
ncols,
|
||||||
ncols_pad,
|
ncols_pad,
|
||||||
op_params[0],
|
op_params[0],
|
||||||
@ -5408,6 +5462,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
|
|
||||||
const ggml_tensor * src0 = node->src[0];
|
const ggml_tensor * src0 = node->src[0];
|
||||||
const ggml_tensor * src1 = node->src[1];
|
const ggml_tensor * src1 = node->src[1];
|
||||||
|
const ggml_tensor * src2 = node->src[2];
|
||||||
|
|
||||||
switch (node->op) {
|
switch (node->op) {
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
@ -5524,7 +5579,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
|
|
||||||
break;
|
break;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node);
|
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
case GGML_OP_ARGSORT:
|
case GGML_OP_ARGSORT:
|
||||||
@ -6500,7 +6555,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c
|
|||||||
for (int j = 0; j < level; j++) {
|
for (int j = 0; j < level; j++) {
|
||||||
std::cerr << " ";
|
std::cerr << " ";
|
||||||
}
|
}
|
||||||
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
|
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
|
||||||
|
|
||||||
done.push_back(tensor);
|
done.push_back(tensor);
|
||||||
|
|
||||||
@ -6550,7 +6605,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
|||||||
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
||||||
void * tensor_data = tensor->data;
|
void * tensor_data = tensor->data;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
||||||
const size_t tensor_size = ggml_nbytes(tensor);
|
const size_t tensor_size = ggml_nbytes(tensor);
|
||||||
tensor_data = malloc(tensor_size);
|
tensor_data = malloc(tensor_size);
|
||||||
|
|
||||||
@ -6561,12 +6616,12 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||||
std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
|
std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
|
||||||
if (tensor->src[0] != nullptr) {
|
if (tensor->src[0] != nullptr) {
|
||||||
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
|
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
|
||||||
}
|
}
|
||||||
if (tensor->src[1] != nullptr) {
|
if (tensor->src[1] != nullptr) {
|
||||||
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
|
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
|
||||||
}
|
}
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
||||||
@ -6577,43 +6632,11 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
|||||||
std::vector<const ggml_tensor *> done;
|
std::vector<const ggml_tensor *> done;
|
||||||
ggml_vk_print_graph_origin(tensor, done);
|
ggml_vk_print_graph_origin(tensor, done);
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
||||||
free(tensor_data);
|
free(tensor_data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
|
||||||
return;
|
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
|
|
||||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
|
|
||||||
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
|
|
||||||
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
|
|
||||||
float val = 0.0f;
|
|
||||||
if (tensor->type == GGML_TYPE_F32) {
|
|
||||||
val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
|
||||||
} else if (tensor->type == GGML_TYPE_F16) {
|
|
||||||
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
|
||||||
}
|
|
||||||
if (std::isnan(val)) {
|
|
||||||
std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
|
|
||||||
std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
|
|
||||||
std::cerr << std::endl;
|
|
||||||
ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
|
|
||||||
std::cerr << std::endl;
|
|
||||||
std::vector<const ggml_tensor *> done;
|
|
||||||
ggml_vk_print_graph_origin(tensor, done);
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void * comp_result;
|
void * comp_result;
|
||||||
size_t comp_size;
|
size_t comp_size;
|
||||||
size_t comp_nb[GGML_MAX_DIMS];
|
size_t comp_nb[GGML_MAX_DIMS];
|
||||||
@ -6637,6 +6660,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
ggml_tensor * src0 = tensor->src[0];
|
ggml_tensor * src0 = tensor->src[0];
|
||||||
ggml_tensor * src1 = tensor->src[1];
|
ggml_tensor * src1 = tensor->src[1];
|
||||||
|
ggml_tensor * src2 = tensor->src[2];
|
||||||
|
|
||||||
struct ggml_init_params iparams = {
|
struct ggml_init_params iparams = {
|
||||||
/*.mem_size =*/ 1024*1024*1024,
|
/*.mem_size =*/ 1024*1024*1024,
|
||||||
@ -6666,10 +6690,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
src0_buffer = malloc(src0_size);
|
src0_buffer = malloc(src0_size);
|
||||||
src0_clone->data = src0_buffer;
|
src0_clone->data = src0_buffer;
|
||||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
if (ggml_backend_buffer_is_host(src0->buffer)) {
|
||||||
memcpy(src0_clone->data, src0->data, src0_size);
|
memcpy(src0_clone->data, src0->data, src0_size);
|
||||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||||
uint64_t offset = extra->offset;
|
uint64_t offset = extra->offset;
|
||||||
@ -6700,8 +6724,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
ggml_vk_print_tensor(ctx, src0, "src0");
|
ggml_vk_print_tensor(ctx, src0, "src0");
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
|
|
||||||
}
|
}
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
src1_clone = ggml_dup_tensor(ggml_ctx, src1);
|
src1_clone = ggml_dup_tensor(ggml_ctx, src1);
|
||||||
@ -6710,10 +6732,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
src1_buffer = malloc(src1_size);
|
src1_buffer = malloc(src1_size);
|
||||||
src1_clone->data = src1_buffer;
|
src1_clone->data = src1_buffer;
|
||||||
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
if (ggml_backend_buffer_is_host(src1->buffer)) {
|
||||||
memcpy(src1_clone->data, src1->data, src1_size);
|
memcpy(src1_clone->data, src1->data, src1_size);
|
||||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
|
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||||
uint64_t offset = extra->offset;
|
uint64_t offset = extra->offset;
|
||||||
@ -6744,12 +6766,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
ggml_vk_print_tensor(ctx, src1, "src1");
|
ggml_vk_print_tensor(ctx, src1, "src1");
|
||||||
std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
|
std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
|
||||||
std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
|
std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
|
||||||
if (src1->src[0] != nullptr) {
|
if (src1->src[0] != nullptr) {
|
||||||
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
|
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
|
||||||
}
|
}
|
||||||
if (src1->src[1] != nullptr) {
|
if (src1->src[1] != nullptr) {
|
||||||
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
|
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
|
||||||
}
|
}
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
|
ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
|
||||||
@ -6760,8 +6782,64 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
std::vector<const ggml_tensor *> done;
|
std::vector<const ggml_tensor *> done;
|
||||||
ggml_vk_print_graph_origin(src1_clone, done);
|
ggml_vk_print_graph_origin(src1_clone, done);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
if (src2 != nullptr) {
|
||||||
|
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
|
||||||
|
|
||||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
|
src2_size = ggml_nbytes(src2);
|
||||||
|
|
||||||
|
src2_buffer = malloc(src2_size);
|
||||||
|
src2_clone->data = src2_buffer;
|
||||||
|
if (ggml_backend_buffer_is_host(src2->buffer)) {
|
||||||
|
memcpy(src2_clone->data, src2->data, src2_size);
|
||||||
|
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
|
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
|
||||||
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||||
|
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||||
|
uint64_t offset = extra->offset;
|
||||||
|
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
|
||||||
|
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
||||||
|
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
||||||
|
const int idx = i3*src2->ne[2] + i2;
|
||||||
|
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
src2_clone->nb[0] = src2->nb[0];
|
||||||
|
src2_clone->nb[1] = src2->nb[1];
|
||||||
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
||||||
|
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (offset + src2_size >= buffer_gpu->size) {
|
||||||
|
src2_size = buffer_gpu->size - offset;
|
||||||
|
}
|
||||||
|
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src2_clone->data, src2_size);
|
||||||
|
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
|
ggml_vk_print_tensor(ctx, src2, "src2");
|
||||||
|
std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl;
|
||||||
|
std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl;
|
||||||
|
if (src2->src[0] != nullptr) {
|
||||||
|
std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl;
|
||||||
|
}
|
||||||
|
if (src2->src[1] != nullptr) {
|
||||||
|
std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl;
|
||||||
|
}
|
||||||
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
|
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0);
|
||||||
|
std::cerr << std::endl;
|
||||||
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
|
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0);
|
||||||
|
std::cerr << std::endl;
|
||||||
|
std::vector<const ggml_tensor *> done;
|
||||||
|
ggml_vk_print_graph_origin(src2_clone, done);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||||
@ -6799,7 +6877,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
float attn_factor = ((float *) tensor->op_params)[8];
|
float attn_factor = ((float *) tensor->op_params)[8];
|
||||||
float beta_fast = ((float *) tensor->op_params)[9];
|
float beta_fast = ((float *) tensor->op_params)[9];
|
||||||
float beta_slow = ((float *) tensor->op_params)[10];
|
float beta_slow = ((float *) tensor->op_params)[10];
|
||||||
tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
} else if (tensor->op == GGML_OP_UNARY) {
|
} else if (tensor->op == GGML_OP_UNARY) {
|
||||||
switch (ggml_get_unary_op(tensor)) {
|
switch (ggml_get_unary_op(tensor)) {
|
||||||
case GGML_UNARY_OP_SILU:
|
case GGML_UNARY_OP_SILU:
|
||||||
@ -6847,7 +6925,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
|
||||||
|
|
||||||
ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
|
|
||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
|
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
|
||||||
}
|
}
|
||||||
@ -6888,7 +6965,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
void * tensor_data = tensor->data;
|
void * tensor_data = tensor->data;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
||||||
size_t tensor_size = ggml_nbytes(tensor);
|
size_t tensor_size = ggml_nbytes(tensor);
|
||||||
tensor_data = malloc(tensor_size);
|
tensor_data = malloc(tensor_size);
|
||||||
|
|
||||||
@ -6936,12 +7013,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
|
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
|
||||||
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
|
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
|
||||||
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
||||||
if (src0 != nullptr) {
|
if (src0 != nullptr) {
|
||||||
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
@ -6977,12 +7054,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
||||||
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
||||||
if (src0 != nullptr) {
|
if (src0 != nullptr) {
|
||||||
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
@ -7001,12 +7078,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
if (avg_err > 0.05 || std::isnan(avg_err)) {
|
if (avg_err > 0.05 || std::isnan(avg_err)) {
|
||||||
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
||||||
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
||||||
if (src0 != nullptr) {
|
if (src0 != nullptr) {
|
||||||
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
||||||
}
|
}
|
||||||
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
std::cerr << std::endl << "Result:" << std::endl;
|
||||||
@ -7018,14 +7095,14 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
ggml_vk_print_graph_origin(tensor, done);
|
ggml_vk_print_graph_origin(tensor, done);
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
} else {
|
} else {
|
||||||
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
|
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
free(comp_result);
|
free(comp_result);
|
||||||
comp_result = nullptr;
|
comp_result = nullptr;
|
||||||
comp_size = 0;
|
comp_size = 0;
|
||||||
|
|
||||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
||||||
free(tensor_data);
|
free(tensor_data);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
688
ggml.c
688
ggml.c
@ -871,22 +871,14 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||||||
},
|
},
|
||||||
[GGML_TYPE_IQ4_XS] = {
|
[GGML_TYPE_IQ4_XS] = {
|
||||||
.type_name = "iq4_xs",
|
.type_name = "iq4_xs",
|
||||||
#if QK_K == 64
|
|
||||||
.blck_size = QK4_NL,
|
|
||||||
#else
|
|
||||||
.blck_size = QK_K,
|
.blck_size = QK_K,
|
||||||
#endif
|
|
||||||
.type_size = sizeof(block_iq4_xs),
|
.type_size = sizeof(block_iq4_xs),
|
||||||
.is_quantized = true,
|
.is_quantized = true,
|
||||||
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
|
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
|
||||||
.from_float = quantize_row_iq4_xs,
|
.from_float = quantize_row_iq4_xs,
|
||||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
|
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
|
||||||
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
|
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
|
||||||
#if QK_K == 64
|
|
||||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
|
||||||
#else
|
|
||||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||||
#endif
|
|
||||||
.nrows = 1,
|
.nrows = 1,
|
||||||
},
|
},
|
||||||
[GGML_TYPE_Q8_K] = {
|
[GGML_TYPE_Q8_K] = {
|
||||||
@ -2678,9 +2670,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||||||
"ARGSORT",
|
"ARGSORT",
|
||||||
"LEAKY_RELU",
|
"LEAKY_RELU",
|
||||||
|
|
||||||
"FLASH_ATTN",
|
|
||||||
"FLASH_ATTN_EXT",
|
"FLASH_ATTN_EXT",
|
||||||
"FLASH_FF",
|
|
||||||
"FLASH_ATTN_BACK",
|
"FLASH_ATTN_BACK",
|
||||||
"SSM_CONV",
|
"SSM_CONV",
|
||||||
"SSM_SCAN",
|
"SSM_SCAN",
|
||||||
@ -2706,7 +2696,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|||||||
"CROSS_ENTROPY_LOSS_BACK",
|
"CROSS_ENTROPY_LOSS_BACK",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
|
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
|
||||||
|
|
||||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||||
"none",
|
"none",
|
||||||
@ -2768,9 +2758,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||||||
"argsort(x)",
|
"argsort(x)",
|
||||||
"leaky_relu(x)",
|
"leaky_relu(x)",
|
||||||
|
|
||||||
"flash_attn(x)",
|
|
||||||
"flash_attn_ext(x)",
|
"flash_attn_ext(x)",
|
||||||
"flash_ff(x)",
|
|
||||||
"flash_attn_back(x)",
|
"flash_attn_back(x)",
|
||||||
"ssm_conv(x)",
|
"ssm_conv(x)",
|
||||||
"ssm_scan(x)",
|
"ssm_scan(x)",
|
||||||
@ -2796,7 +2784,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||||||
"cross_entropy_loss_back(x,y)",
|
"cross_entropy_loss_back(x,y)",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
|
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
|
||||||
|
|
||||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||||
|
|
||||||
@ -6956,38 +6944,6 @@ struct ggml_tensor * ggml_top_k(
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_flash_attn
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_attn(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * q,
|
|
||||||
struct ggml_tensor * k,
|
|
||||||
struct ggml_tensor * v,
|
|
||||||
bool masked) {
|
|
||||||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
|
||||||
// TODO: check if vT can be multiplied by (k*qT)
|
|
||||||
|
|
||||||
bool is_node = false;
|
|
||||||
|
|
||||||
if (q->grad || k->grad || v->grad) {
|
|
||||||
is_node = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
|
|
||||||
|
|
||||||
int32_t t = masked ? 1 : 0;
|
|
||||||
ggml_set_op_params(result, &t, sizeof(t));
|
|
||||||
|
|
||||||
result->op = GGML_OP_FLASH_ATTN;
|
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
||||||
result->src[0] = q;
|
|
||||||
result->src[1] = k;
|
|
||||||
result->src[2] = v;
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_flash_attn_ext
|
// ggml_flash_attn_ext
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_attn_ext(
|
struct ggml_tensor * ggml_flash_attn_ext(
|
||||||
@ -7047,38 +7003,6 @@ void ggml_flash_attn_ext_set_prec(
|
|||||||
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
|
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_flash_ff
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_ff(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b0,
|
|
||||||
struct ggml_tensor * b1,
|
|
||||||
struct ggml_tensor * c0,
|
|
||||||
struct ggml_tensor * c1) {
|
|
||||||
GGML_ASSERT(ggml_can_mul_mat(b0, a));
|
|
||||||
// TODO: more checks
|
|
||||||
|
|
||||||
bool is_node = false;
|
|
||||||
|
|
||||||
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
|
|
||||||
is_node = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
|
|
||||||
|
|
||||||
result->op = GGML_OP_FLASH_FF;
|
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
||||||
result->src[0] = a;
|
|
||||||
result->src[1] = b0;
|
|
||||||
result->src[2] = b1;
|
|
||||||
result->src[3] = c0;
|
|
||||||
result->src[4] = c1;
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_flash_attn_back
|
// ggml_flash_attn_back
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_attn_back(
|
struct ggml_tensor * ggml_flash_attn_back(
|
||||||
@ -7088,6 +7012,8 @@ struct ggml_tensor * ggml_flash_attn_back(
|
|||||||
struct ggml_tensor * v,
|
struct ggml_tensor * v,
|
||||||
struct ggml_tensor * d,
|
struct ggml_tensor * d,
|
||||||
bool masked) {
|
bool masked) {
|
||||||
|
GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
|
||||||
|
|
||||||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
||||||
// TODO: check if vT can be multiplied by (k*qT)
|
// TODO: check if vT can be multiplied by (k*qT)
|
||||||
|
|
||||||
@ -15716,400 +15642,6 @@ static void ggml_compute_forward_argsort(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_flash_attn
|
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn_f32(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
const bool masked,
|
|
||||||
struct ggml_tensor * dst) {
|
|
||||||
|
|
||||||
const struct ggml_tensor * q = dst->src[0];
|
|
||||||
const struct ggml_tensor * k = dst->src[1];
|
|
||||||
const struct ggml_tensor * v = dst->src[2];
|
|
||||||
|
|
||||||
int64_t t0 = ggml_perf_time_us();
|
|
||||||
UNUSED(t0);
|
|
||||||
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
||||||
|
|
||||||
const int ith = params->ith;
|
|
||||||
const int nth = params->nth;
|
|
||||||
|
|
||||||
const int64_t D = neq0;
|
|
||||||
const int64_t N = neq1;
|
|
||||||
const int64_t P = nek1 - N;
|
|
||||||
const int64_t M = P + N;
|
|
||||||
|
|
||||||
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
||||||
|
|
||||||
GGML_ASSERT(ne0 == D);
|
|
||||||
GGML_ASSERT(ne1 == N);
|
|
||||||
GGML_ASSERT(P >= 0);
|
|
||||||
|
|
||||||
GGML_ASSERT(nbq0 == sizeof(float));
|
|
||||||
GGML_ASSERT(nbk0 == sizeof(float));
|
|
||||||
GGML_ASSERT(nbv0 == sizeof(float));
|
|
||||||
|
|
||||||
GGML_ASSERT(neq0 == D);
|
|
||||||
GGML_ASSERT(nek0 == D);
|
|
||||||
GGML_ASSERT(nev1 == D);
|
|
||||||
|
|
||||||
GGML_ASSERT(neq1 == N);
|
|
||||||
GGML_ASSERT(nek1 == N + P);
|
|
||||||
GGML_ASSERT(nev1 == D);
|
|
||||||
|
|
||||||
// dst cannot be transposed or permuted
|
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
|
||||||
GGML_ASSERT(nb0 <= nb1);
|
|
||||||
GGML_ASSERT(nb1 <= nb2);
|
|
||||||
GGML_ASSERT(nb2 <= nb3);
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_FINALIZE) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// parallelize by q rows using ggml_vec_dot_f32
|
|
||||||
|
|
||||||
// total rows in q
|
|
||||||
const int nr = neq1*neq2*neq3;
|
|
||||||
|
|
||||||
// rows per thread
|
|
||||||
const int dr = (nr + nth - 1)/nth;
|
|
||||||
|
|
||||||
// row range for this thread
|
|
||||||
const int ir0 = dr*ith;
|
|
||||||
const int ir1 = MIN(ir0 + dr, nr);
|
|
||||||
|
|
||||||
const float scale = 1.0f/sqrtf(D);
|
|
||||||
|
|
||||||
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
||||||
|
|
||||||
for (int ir = ir0; ir < ir1; ++ir) {
|
|
||||||
// q indices
|
|
||||||
const int iq3 = ir/(neq2*neq1);
|
|
||||||
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
|
||||||
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
|
||||||
|
|
||||||
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
|
|
||||||
|
|
||||||
for (int i = M; i < Mup; ++i) {
|
|
||||||
S[i] = -INFINITY;
|
|
||||||
}
|
|
||||||
|
|
||||||
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
|
|
||||||
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
|
||||||
// k indices
|
|
||||||
const int ik3 = iq3;
|
|
||||||
const int ik2 = iq2 % nek2;
|
|
||||||
const int ik1 = ic;
|
|
||||||
|
|
||||||
// S indices
|
|
||||||
const int i1 = ik1;
|
|
||||||
|
|
||||||
ggml_vec_dot_f32(neq0,
|
|
||||||
S + i1, 0,
|
|
||||||
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
|
|
||||||
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
// scale
|
|
||||||
ggml_vec_scale_f32(masked_begin, S, scale);
|
|
||||||
|
|
||||||
for (int64_t i = masked_begin; i < M; i++) {
|
|
||||||
S[i] = -INFINITY;
|
|
||||||
}
|
|
||||||
|
|
||||||
// softmax
|
|
||||||
// exclude known -INF S[..] values from max and loop
|
|
||||||
// dont forget to set their SW values to zero
|
|
||||||
{
|
|
||||||
float max = -INFINITY;
|
|
||||||
ggml_vec_max_f32(masked_begin, &max, S);
|
|
||||||
|
|
||||||
ggml_float sum = 0.0;
|
|
||||||
{
|
|
||||||
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
||||||
max = -max;
|
|
||||||
vDSP_vsadd(S, 1, &max, S, 1, Mup);
|
|
||||||
vvexpf(S, S, &Mup);
|
|
||||||
ggml_vec_sum_f32(Mup, &sum, S);
|
|
||||||
#else
|
|
||||||
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
assert(sum > 0.0);
|
|
||||||
|
|
||||||
sum = 1.0/sum;
|
|
||||||
ggml_vec_scale_f32(masked_begin, S, sum);
|
|
||||||
|
|
||||||
#ifndef NDEBUG
|
|
||||||
for (int i = 0; i < masked_begin; ++i) {
|
|
||||||
assert(!isnan(S[i]));
|
|
||||||
assert(!isinf(S[i]));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int64_t ic = 0; ic < nev1; ++ic) {
|
|
||||||
// dst indices
|
|
||||||
const int i1 = iq1;
|
|
||||||
const int i2 = iq2;
|
|
||||||
const int i3 = iq3;
|
|
||||||
|
|
||||||
// v indices
|
|
||||||
const int iv2 = iq2 % nev2;
|
|
||||||
const int iv3 = iq3;
|
|
||||||
|
|
||||||
ggml_vec_dot_f32(masked_begin,
|
|
||||||
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
|
|
||||||
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
|
|
||||||
S, 0, 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn_f16(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
const bool masked,
|
|
||||||
struct ggml_tensor * dst) {
|
|
||||||
|
|
||||||
const struct ggml_tensor * q = dst->src[0];
|
|
||||||
const struct ggml_tensor * k = dst->src[1];
|
|
||||||
const struct ggml_tensor * v = dst->src[2];
|
|
||||||
|
|
||||||
int64_t t0 = ggml_perf_time_us();
|
|
||||||
UNUSED(t0);
|
|
||||||
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
||||||
|
|
||||||
const int ith = params->ith;
|
|
||||||
const int nth = params->nth;
|
|
||||||
|
|
||||||
const int64_t D = neq0;
|
|
||||||
const int64_t N = neq1;
|
|
||||||
const int64_t P = nek1 - N;
|
|
||||||
const int64_t M = P + N;
|
|
||||||
|
|
||||||
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
||||||
|
|
||||||
GGML_ASSERT(ne0 == D);
|
|
||||||
GGML_ASSERT(ne1 == N);
|
|
||||||
GGML_ASSERT(P >= 0);
|
|
||||||
|
|
||||||
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
|
|
||||||
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
|
|
||||||
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
|
|
||||||
|
|
||||||
GGML_ASSERT(neq0 == D);
|
|
||||||
GGML_ASSERT(nek0 == D);
|
|
||||||
GGML_ASSERT(nev1 == D);
|
|
||||||
|
|
||||||
GGML_ASSERT(neq1 == N);
|
|
||||||
GGML_ASSERT(nek1 == N + P);
|
|
||||||
GGML_ASSERT(nev1 == D);
|
|
||||||
|
|
||||||
// dst cannot be transposed or permuted
|
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
|
||||||
GGML_ASSERT(nb0 <= nb1);
|
|
||||||
GGML_ASSERT(nb1 <= nb2);
|
|
||||||
GGML_ASSERT(nb2 <= nb3);
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_FINALIZE) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// parallelize by q rows using ggml_vec_dot_f32
|
|
||||||
|
|
||||||
// total rows in q
|
|
||||||
const int nr = neq1*neq2*neq3;
|
|
||||||
|
|
||||||
// rows per thread
|
|
||||||
const int dr = (nr + nth - 1)/nth;
|
|
||||||
|
|
||||||
// row range for this thread
|
|
||||||
const int ir0 = dr*ith;
|
|
||||||
const int ir1 = MIN(ir0 + dr, nr);
|
|
||||||
|
|
||||||
const float scale = 1.0f/sqrtf(D);
|
|
||||||
|
|
||||||
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
||||||
|
|
||||||
for (int ir = ir0; ir < ir1; ++ir) {
|
|
||||||
// q indices
|
|
||||||
const int iq3 = ir/(neq2*neq1);
|
|
||||||
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
|
||||||
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
|
||||||
|
|
||||||
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
|
|
||||||
|
|
||||||
for (int i = M; i < Mup; ++i) {
|
|
||||||
S[i] = -INFINITY;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
|
|
||||||
for (int64_t ic = 0; ic < nek1; ++ic) {
|
|
||||||
// k indices
|
|
||||||
const int ik3 = iq3;
|
|
||||||
const int ik2 = iq2 % nek2;
|
|
||||||
const int ik1 = ic;
|
|
||||||
|
|
||||||
// S indices
|
|
||||||
const int i1 = ik1;
|
|
||||||
|
|
||||||
ggml_vec_dot_f16(neq0,
|
|
||||||
S + i1, 0,
|
|
||||||
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
|
|
||||||
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
|
|
||||||
// k indices
|
|
||||||
const int ik3 = iq3;
|
|
||||||
const int ik2 = iq2 % nek2;
|
|
||||||
const int ik1 = ic;
|
|
||||||
|
|
||||||
// S indices
|
|
||||||
const int i1 = ik1;
|
|
||||||
|
|
||||||
ggml_vec_dot_f16_unroll(neq0, nbk1,
|
|
||||||
S + i1,
|
|
||||||
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
||||||
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// scale
|
|
||||||
ggml_vec_scale_f32(nek1, S, scale);
|
|
||||||
|
|
||||||
if (masked) {
|
|
||||||
for (int64_t i = P; i < M; i++) {
|
|
||||||
if (i > P + iq1) {
|
|
||||||
S[i] = -INFINITY;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// softmax
|
|
||||||
// todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
|
|
||||||
// dont forget to set their S values to zero
|
|
||||||
{
|
|
||||||
float max = -INFINITY;
|
|
||||||
ggml_vec_max_f32(M, &max, S);
|
|
||||||
|
|
||||||
ggml_float sum = 0.0;
|
|
||||||
{
|
|
||||||
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
||||||
max = -max;
|
|
||||||
vDSP_vsadd(S, 1, &max, S, 1, Mup);
|
|
||||||
vvexpf(S, S, &Mup);
|
|
||||||
ggml_vec_sum_f32(Mup, &sum, S);
|
|
||||||
#else
|
|
||||||
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
assert(sum > 0.0);
|
|
||||||
|
|
||||||
sum = 1.0/sum;
|
|
||||||
ggml_vec_scale_f32(M, S, sum);
|
|
||||||
|
|
||||||
#ifndef NDEBUG
|
|
||||||
for (int i = 0; i < M; ++i) {
|
|
||||||
assert(!isnan(S[i]));
|
|
||||||
assert(!isinf(S[i]));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
|
|
||||||
|
|
||||||
for (int64_t i = 0; i < M; i++) {
|
|
||||||
S16[i] = GGML_FP32_TO_FP16(S[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
|
|
||||||
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
|
|
||||||
for (int64_t ic = 0; ic < nev1; ++ic) {
|
|
||||||
// dst indices
|
|
||||||
const int i1 = iq1;
|
|
||||||
const int i2 = iq2;
|
|
||||||
const int i3 = iq3;
|
|
||||||
|
|
||||||
// v indices
|
|
||||||
const int iv2 = iq2 % nev2;
|
|
||||||
const int iv3 = iq3;
|
|
||||||
|
|
||||||
ggml_vec_dot_f16(nev0,
|
|
||||||
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
|
|
||||||
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
|
|
||||||
S16, 0, 1);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
|
|
||||||
// dst indices
|
|
||||||
const int i1 = iq1;
|
|
||||||
const int i2 = iq2;
|
|
||||||
const int i3 = iq3;
|
|
||||||
|
|
||||||
// v indices
|
|
||||||
const int iv2 = iq2 % nev2;
|
|
||||||
const int iv3 = iq3;
|
|
||||||
|
|
||||||
ggml_vec_dot_f16_unroll(nev0, nbv1,
|
|
||||||
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
||||||
((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
|
|
||||||
S16);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
const bool masked,
|
|
||||||
struct ggml_tensor * dst) {
|
|
||||||
|
|
||||||
const struct ggml_tensor * q = dst->src[0];
|
|
||||||
|
|
||||||
switch (q->type) {
|
|
||||||
case GGML_TYPE_F16:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_flash_attn_f16(params, masked, dst);
|
|
||||||
} break;
|
|
||||||
case GGML_TYPE_F32:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_flash_attn_f32(params, masked, dst);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_compute_forward_flash_attn_ext
|
// ggml_compute_forward_flash_attn_ext
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn_ext_f16(
|
static void ggml_compute_forward_flash_attn_ext_f16(
|
||||||
@ -16343,165 +15875,6 @@ static void ggml_compute_forward_flash_attn_ext(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_flash_ff
|
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_ff_f16(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
struct ggml_tensor * dst) {
|
|
||||||
|
|
||||||
const struct ggml_tensor * a = dst->src[0]; // F16
|
|
||||||
const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
|
|
||||||
const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
|
|
||||||
const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
|
|
||||||
const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
|
|
||||||
|
|
||||||
int64_t t0 = ggml_perf_time_us();
|
|
||||||
UNUSED(t0);
|
|
||||||
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nba, a, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
|
|
||||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
||||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
||||||
|
|
||||||
const int ith = params->ith;
|
|
||||||
const int nth = params->nth;
|
|
||||||
|
|
||||||
const int64_t D = nea0;
|
|
||||||
//const int64_t N = nea1;
|
|
||||||
const int64_t M = neb01;
|
|
||||||
|
|
||||||
GGML_ASSERT(ne0 == nea0);
|
|
||||||
GGML_ASSERT(ne1 == nea1);
|
|
||||||
GGML_ASSERT(ne2 == nea2);
|
|
||||||
|
|
||||||
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
|
|
||||||
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
|
|
||||||
GGML_ASSERT(nbb10 == sizeof(float));
|
|
||||||
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
|
|
||||||
GGML_ASSERT(nbc10 == sizeof(float));
|
|
||||||
|
|
||||||
GGML_ASSERT(neb00 == D);
|
|
||||||
GGML_ASSERT(neb01 == M);
|
|
||||||
GGML_ASSERT(neb10 == M);
|
|
||||||
GGML_ASSERT(neb11 == 1);
|
|
||||||
|
|
||||||
GGML_ASSERT(nec00 == M);
|
|
||||||
GGML_ASSERT(nec01 == D);
|
|
||||||
GGML_ASSERT(nec10 == D);
|
|
||||||
GGML_ASSERT(nec11 == 1);
|
|
||||||
|
|
||||||
// dst cannot be transposed or permuted
|
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
|
||||||
GGML_ASSERT(nb0 <= nb1);
|
|
||||||
GGML_ASSERT(nb1 <= nb2);
|
|
||||||
GGML_ASSERT(nb2 <= nb3);
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params->type == GGML_TASK_TYPE_FINALIZE) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// parallelize by a rows using ggml_vec_dot_f32
|
|
||||||
|
|
||||||
// total rows in a
|
|
||||||
const int nr = nea1*nea2*nea3;
|
|
||||||
|
|
||||||
// rows per thread
|
|
||||||
const int dr = (nr + nth - 1)/nth;
|
|
||||||
|
|
||||||
// row range for this thread
|
|
||||||
const int ir0 = dr*ith;
|
|
||||||
const int ir1 = MIN(ir0 + dr, nr);
|
|
||||||
|
|
||||||
for (int ir = ir0; ir < ir1; ++ir) {
|
|
||||||
// a indices
|
|
||||||
const int ia3 = ir/(nea2*nea1);
|
|
||||||
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
|
|
||||||
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
|
|
||||||
|
|
||||||
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
|
|
||||||
|
|
||||||
for (int64_t ic = 0; ic < neb01; ++ic) {
|
|
||||||
// b0 indices
|
|
||||||
const int ib03 = ia3;
|
|
||||||
const int ib02 = ia2;
|
|
||||||
const int ib01 = ic;
|
|
||||||
|
|
||||||
// S indices
|
|
||||||
const int i1 = ib01;
|
|
||||||
|
|
||||||
ggml_vec_dot_f16(nea0,
|
|
||||||
S + i1, 0,
|
|
||||||
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
|
|
||||||
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
|
|
||||||
//ggml_vec_gelu_f32(neb01, S, S);
|
|
||||||
|
|
||||||
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
|
|
||||||
|
|
||||||
for (int64_t i = 0; i < M; i++) {
|
|
||||||
S16[i] = GGML_FP32_TO_FP16(S[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_vec_gelu_f16(neb01, S16, S16);
|
|
||||||
|
|
||||||
{
|
|
||||||
// dst indices
|
|
||||||
const int i1 = ia1;
|
|
||||||
const int i2 = ia2;
|
|
||||||
const int i3 = ia3;
|
|
||||||
|
|
||||||
for (int64_t ic = 0; ic < nec01; ++ic) {
|
|
||||||
|
|
||||||
ggml_vec_dot_f16(neb01,
|
|
||||||
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
|
|
||||||
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
|
|
||||||
S16, 0, 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_vec_add_f32(nec01,
|
|
||||||
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
|
|
||||||
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
|
|
||||||
(float *) c1->data);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_ff(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
struct ggml_tensor * dst) {
|
|
||||||
|
|
||||||
const struct ggml_tensor * b0 = dst->src[1];
|
|
||||||
|
|
||||||
switch (b0->type) {
|
|
||||||
case GGML_TYPE_F16:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_flash_ff_f16(params, dst);
|
|
||||||
} break;
|
|
||||||
case GGML_TYPE_F32:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false); // TODO
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_compute_forward_flash_attn_back
|
// ggml_compute_forward_flash_attn_back
|
||||||
|
|
||||||
static void ggml_compute_forward_flash_attn_back_f32(
|
static void ggml_compute_forward_flash_attn_back_f32(
|
||||||
@ -18053,21 +17426,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
{
|
{
|
||||||
ggml_compute_forward_leaky_relu(params, tensor);
|
ggml_compute_forward_leaky_relu(params, tensor);
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
|
||||||
{
|
|
||||||
const int32_t t = ggml_get_op_params_i32(tensor, 0);
|
|
||||||
GGML_ASSERT(t == 0 || t == 1);
|
|
||||||
const bool masked = t != 0;
|
|
||||||
ggml_compute_forward_flash_attn(params, masked, tensor);
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
{
|
{
|
||||||
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
|
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_FF:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_flash_ff(params, tensor);
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_BACK:
|
case GGML_OP_FLASH_ATTN_BACK:
|
||||||
{
|
{
|
||||||
int32_t t = ggml_get_op_params_i32(tensor, 0);
|
int32_t t = ggml_get_op_params_i32(tensor, 0);
|
||||||
@ -19074,7 +18436,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
{
|
{
|
||||||
GGML_ASSERT(false); // TODO: not implemented
|
GGML_ASSERT(false); // TODO: not implemented
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
|
||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
{
|
{
|
||||||
struct ggml_tensor * flash_grad = NULL;
|
struct ggml_tensor * flash_grad = NULL;
|
||||||
@ -19128,10 +18489,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
zero_table);
|
zero_table);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_FF:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false); // not supported
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_BACK:
|
case GGML_OP_FLASH_ATTN_BACK:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(false); // not supported
|
GGML_ASSERT(false); // not supported
|
||||||
@ -19818,15 +19175,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
|||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
|
||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_FF:
|
|
||||||
{
|
|
||||||
n_tasks = n_threads;
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_BACK:
|
case GGML_OP_FLASH_ATTN_BACK:
|
||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
@ -20223,40 +19575,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
|||||||
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
|
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
|
||||||
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
|
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_ATTN:
|
|
||||||
{
|
|
||||||
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
|
|
||||||
|
|
||||||
if (node->src[1]->type == GGML_TYPE_F32) {
|
|
||||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
|
||||||
} else if (node->src[1]->type == GGML_TYPE_F16) {
|
|
||||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
|
||||||
} else if (node->src[1]->type == GGML_TYPE_BF16) {
|
|
||||||
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
|
|
||||||
}
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
{
|
{
|
||||||
const int64_t ne00 = node->src[0]->ne[0]; // D
|
const int64_t ne00 = node->src[0]->ne[0]; // D
|
||||||
|
|
||||||
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
|
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_FLASH_FF:
|
|
||||||
{
|
|
||||||
if (node->src[1]->type == GGML_TYPE_F32) {
|
|
||||||
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
|
|
||||||
} else if (node->src[1]->type == GGML_TYPE_F16) {
|
|
||||||
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
|
|
||||||
} else if (node->src[1]->type == GGML_TYPE_BF16) {
|
|
||||||
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
|
|
||||||
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
|
|
||||||
}
|
|
||||||
} break;
|
|
||||||
case GGML_OP_FLASH_ATTN_BACK:
|
case GGML_OP_FLASH_ATTN_BACK:
|
||||||
{
|
{
|
||||||
const int64_t D = node->src[0]->ne[0];
|
const int64_t D = node->src[0]->ne[0];
|
||||||
@ -22097,11 +21421,7 @@ size_t ggml_quantize_chunk(
|
|||||||
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
#if QK_K == 64
|
|
||||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
|
||||||
#else
|
|
||||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||||
#endif
|
|
||||||
case GGML_TYPE_F16:
|
case GGML_TYPE_F16:
|
||||||
{
|
{
|
||||||
size_t elemsize = sizeof(ggml_fp16_t);
|
size_t elemsize = sizeof(ggml_fp16_t);
|
||||||
|
18
ggml.h
18
ggml.h
@ -481,9 +481,7 @@ extern "C" {
|
|||||||
GGML_OP_ARGSORT,
|
GGML_OP_ARGSORT,
|
||||||
GGML_OP_LEAKY_RELU,
|
GGML_OP_LEAKY_RELU,
|
||||||
|
|
||||||
GGML_OP_FLASH_ATTN,
|
|
||||||
GGML_OP_FLASH_ATTN_EXT,
|
GGML_OP_FLASH_ATTN_EXT,
|
||||||
GGML_OP_FLASH_FF,
|
|
||||||
GGML_OP_FLASH_ATTN_BACK,
|
GGML_OP_FLASH_ATTN_BACK,
|
||||||
GGML_OP_SSM_CONV,
|
GGML_OP_SSM_CONV,
|
||||||
GGML_OP_SSM_SCAN,
|
GGML_OP_SSM_SCAN,
|
||||||
@ -1761,13 +1759,6 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
int k);
|
int k);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_flash_attn(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * q,
|
|
||||||
struct ggml_tensor * k,
|
|
||||||
struct ggml_tensor * v,
|
|
||||||
bool masked);
|
|
||||||
|
|
||||||
#define GGML_KQ_MASK_PAD 32
|
#define GGML_KQ_MASK_PAD 32
|
||||||
|
|
||||||
// q: [n_embd, n_batch, n_head, 1]
|
// q: [n_embd, n_batch, n_head, 1]
|
||||||
@ -1788,6 +1779,7 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_prec prec);
|
enum ggml_prec prec);
|
||||||
|
|
||||||
|
// TODO: needs to be adapted to ggml_flash_attn_ext
|
||||||
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * q,
|
struct ggml_tensor * q,
|
||||||
@ -1796,14 +1788,6 @@ extern "C" {
|
|||||||
struct ggml_tensor * d,
|
struct ggml_tensor * d,
|
||||||
bool masked);
|
bool masked);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_flash_ff(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b0,
|
|
||||||
struct ggml_tensor * b1,
|
|
||||||
struct ggml_tensor * c0,
|
|
||||||
struct ggml_tensor * c1);
|
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * s,
|
struct ggml_tensor * s,
|
||||||
|
@ -2609,7 +2609,8 @@ layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
|
|||||||
|
|
||||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||||
layout (binding = 1) readonly buffer Y {int data_b[];};
|
layout (binding = 1) readonly buffer Y {int data_b[];};
|
||||||
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
layout (binding = 2) readonly buffer Z {float data_freq_factors[];};
|
||||||
|
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
|
||||||
|
|
||||||
layout (push_constant) uniform parameter {
|
layout (push_constant) uniform parameter {
|
||||||
uint ncols;
|
uint ncols;
|
||||||
@ -2622,6 +2623,7 @@ layout (push_constant) uniform parameter {
|
|||||||
float corr_dims[4];
|
float corr_dims[4];
|
||||||
float theta_scale;
|
float theta_scale;
|
||||||
float inv_ndims;
|
float inv_ndims;
|
||||||
|
uint has_freq_facs;
|
||||||
} p;
|
} p;
|
||||||
|
|
||||||
float rope_yarn_ramp(const float low, const float high, const uint i0) {
|
float rope_yarn_ramp(const float low, const float high, const uint i0) {
|
||||||
@ -2671,7 +2673,8 @@ void main() {
|
|||||||
const float cur_rot = p.inv_ndims * ic - ib;
|
const float cur_rot = p.inv_ndims * ic - ib;
|
||||||
|
|
||||||
const int pos = data_b[i2];
|
const int pos = data_b[i2];
|
||||||
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f);
|
const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f;
|
||||||
|
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor;
|
||||||
|
|
||||||
float cos_theta, sin_theta;
|
float cos_theta, sin_theta;
|
||||||
rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);
|
rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);
|
||||||
|
@ -140,6 +140,7 @@ class MODEL_ARCH(IntEnum):
|
|||||||
COMMAND_R = auto()
|
COMMAND_R = auto()
|
||||||
DBRX = auto()
|
DBRX = auto()
|
||||||
OLMO = auto()
|
OLMO = auto()
|
||||||
|
ARCTIC = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
@ -168,6 +169,7 @@ class MODEL_TENSOR(IntEnum):
|
|||||||
FFN_DOWN = auto()
|
FFN_DOWN = auto()
|
||||||
FFN_UP = auto()
|
FFN_UP = auto()
|
||||||
FFN_ACT = auto()
|
FFN_ACT = auto()
|
||||||
|
FFN_NORM_EXP = auto()
|
||||||
FFN_GATE_EXP = auto()
|
FFN_GATE_EXP = auto()
|
||||||
FFN_DOWN_EXP = auto()
|
FFN_DOWN_EXP = auto()
|
||||||
FFN_UP_EXP = auto()
|
FFN_UP_EXP = auto()
|
||||||
@ -223,6 +225,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.COMMAND_R: "command-r",
|
MODEL_ARCH.COMMAND_R: "command-r",
|
||||||
MODEL_ARCH.DBRX: "dbrx",
|
MODEL_ARCH.DBRX: "dbrx",
|
||||||
MODEL_ARCH.OLMO: "olmo",
|
MODEL_ARCH.OLMO: "olmo",
|
||||||
|
MODEL_ARCH.ARCTIC: "arctic",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
@ -256,6 +259,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
|
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
|
||||||
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
|
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
|
||||||
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
||||||
|
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
|
||||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
||||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
||||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
||||||
@ -768,6 +772,27 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.ARCTIC: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_GATE_INP,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.FFN_NORM_EXP,
|
||||||
|
MODEL_TENSOR.FFN_GATE_EXP,
|
||||||
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||||
|
MODEL_TENSOR.FFN_UP_EXP,
|
||||||
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -941,9 +966,8 @@ class GGUFValueType(IntEnum):
|
|||||||
raise ValueError(f"Unknown type: {type(val)}")
|
raise ValueError(f"Unknown type: {type(val)}")
|
||||||
|
|
||||||
|
|
||||||
# Note: Does not support GGML_QKK_64
|
|
||||||
QK_K = 256
|
|
||||||
# Items here are (block size, type size)
|
# Items here are (block size, type size)
|
||||||
|
QK_K = 256
|
||||||
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
||||||
GGMLQuantizationType.F32: (1, 4),
|
GGMLQuantizationType.F32: (1, 4),
|
||||||
GGMLQuantizationType.F16: (1, 2),
|
GGMLQuantizationType.F16: (1, 2),
|
||||||
|
@ -246,6 +246,7 @@ class TensorNameMap:
|
|||||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
||||||
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
||||||
|
"model.layers.{bid}.residual_mlp.w3", # arctic
|
||||||
"model.layers.{bid}.feed_forward.up_proj", # jamba
|
"model.layers.{bid}.feed_forward.up_proj", # jamba
|
||||||
),
|
),
|
||||||
|
|
||||||
@ -275,6 +276,7 @@ class TensorNameMap:
|
|||||||
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
||||||
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
||||||
"transformer.h.{bid}.mlp.linear_1", # refact
|
"transformer.h.{bid}.mlp.linear_1", # refact
|
||||||
|
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||||
"model.layers.{bid}.feed_forward.gate_proj", # jamba
|
"model.layers.{bid}.feed_forward.gate_proj", # jamba
|
||||||
),
|
),
|
||||||
|
|
||||||
@ -310,6 +312,7 @@ class TensorNameMap:
|
|||||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
||||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
||||||
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
|
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
|
||||||
|
"model.layers.{bid}.residual_mlp.w2", # arctic
|
||||||
"model.layers.{bid}.feed_forward.down_proj", # jamba
|
"model.layers.{bid}.feed_forward.down_proj", # jamba
|
||||||
),
|
),
|
||||||
|
|
||||||
@ -406,6 +409,18 @@ class TensorNameMap:
|
|||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# architecture-specific block mappings
|
||||||
|
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
|
||||||
|
MODEL_ARCH.ARCTIC: {
|
||||||
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
|
"model.layers.{bid}.residual_layernorm",
|
||||||
|
),
|
||||||
|
MODEL_TENSOR.FFN_NORM_EXP: (
|
||||||
|
"model.layers.{bid}.post_attention_layernorm",
|
||||||
|
),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||||
|
|
||||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||||
@ -417,12 +432,14 @@ class TensorNameMap:
|
|||||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
self.mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
if arch in self.arch_block_mappings_cfg:
|
||||||
|
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
|
||||||
for bid in range(n_blocks):
|
for bid in range(n_blocks):
|
||||||
for tensor, keys in self.block_mappings_cfg.items():
|
for tensor, keys in self.block_mappings_cfg.items():
|
||||||
if tensor not in MODEL_TENSORS[arch]:
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
continue
|
continue
|
||||||
# TODO: make this configurable
|
# TODO: make this configurable
|
||||||
n_experts = 60
|
n_experts = 128
|
||||||
for xid in range(n_experts):
|
for xid in range(n_experts):
|
||||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
|
570
llama.cpp
570
llama.cpp
@ -26,13 +26,9 @@
|
|||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
# include "ggml-metal.h"
|
# include "ggml-metal.h"
|
||||||
#endif
|
#endif
|
||||||
#ifndef QK_K
|
|
||||||
# ifdef GGML_QKK_64
|
// TODO: replace with ggml API call
|
||||||
# define QK_K 64
|
#define QK_K 256
|
||||||
# else
|
|
||||||
# define QK_K 256
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __has_include
|
#ifdef __has_include
|
||||||
#if __has_include(<unistd.h>)
|
#if __has_include(<unistd.h>)
|
||||||
@ -107,7 +103,7 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define LLAMA_MAX_NODES 8192
|
#define LLAMA_MAX_NODES 8192
|
||||||
#define LLAMA_MAX_EXPERTS 60
|
#define LLAMA_MAX_EXPERTS 128
|
||||||
|
|
||||||
//
|
//
|
||||||
// logging
|
// logging
|
||||||
@ -226,6 +222,7 @@ enum llm_arch {
|
|||||||
LLM_ARCH_COMMAND_R,
|
LLM_ARCH_COMMAND_R,
|
||||||
LLM_ARCH_DBRX,
|
LLM_ARCH_DBRX,
|
||||||
LLM_ARCH_OLMO,
|
LLM_ARCH_OLMO,
|
||||||
|
LLM_ARCH_ARCTIC,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -263,6 +260,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||||
{ LLM_ARCH_DBRX, "dbrx" },
|
{ LLM_ARCH_DBRX, "dbrx" },
|
||||||
{ LLM_ARCH_OLMO, "olmo" },
|
{ LLM_ARCH_OLMO, "olmo" },
|
||||||
|
{ LLM_ARCH_ARCTIC, "arctic" },
|
||||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -461,6 +459,7 @@ enum llm_tensor {
|
|||||||
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
||||||
LLM_TENSOR_FFN_GATE_EXP,
|
LLM_TENSOR_FFN_GATE_EXP,
|
||||||
LLM_TENSOR_FFN_UP_EXP,
|
LLM_TENSOR_FFN_UP_EXP,
|
||||||
|
LLM_TENSOR_FFN_NORM_EXPS,
|
||||||
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
||||||
LLM_TENSOR_FFN_GATE_EXPS,
|
LLM_TENSOR_FFN_GATE_EXPS,
|
||||||
LLM_TENSOR_FFN_UP_EXPS,
|
LLM_TENSOR_FFN_UP_EXPS,
|
||||||
@ -1072,6 +1071,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_ARCTIC,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
@ -1732,17 +1753,24 @@ static llama_state g_state;
|
|||||||
// available llama models
|
// available llama models
|
||||||
enum e_model {
|
enum e_model {
|
||||||
MODEL_UNKNOWN,
|
MODEL_UNKNOWN,
|
||||||
|
MODEL_14M,
|
||||||
MODEL_17M,
|
MODEL_17M,
|
||||||
MODEL_22M,
|
MODEL_22M,
|
||||||
MODEL_33M,
|
MODEL_33M,
|
||||||
|
MODEL_70M,
|
||||||
MODEL_109M,
|
MODEL_109M,
|
||||||
MODEL_137M,
|
MODEL_137M,
|
||||||
|
MODEL_160M,
|
||||||
MODEL_335M,
|
MODEL_335M,
|
||||||
|
MODEL_410M,
|
||||||
MODEL_0_5B,
|
MODEL_0_5B,
|
||||||
MODEL_1B,
|
MODEL_1B,
|
||||||
|
MODEL_1_4B,
|
||||||
MODEL_2B,
|
MODEL_2B,
|
||||||
|
MODEL_2_8B,
|
||||||
MODEL_3B,
|
MODEL_3B,
|
||||||
MODEL_4B,
|
MODEL_4B,
|
||||||
|
MODEL_6_9B,
|
||||||
MODEL_7B,
|
MODEL_7B,
|
||||||
MODEL_8B,
|
MODEL_8B,
|
||||||
MODEL_12B,
|
MODEL_12B,
|
||||||
@ -1765,6 +1793,7 @@ enum e_model {
|
|||||||
MODEL_8x7B,
|
MODEL_8x7B,
|
||||||
MODEL_8x22B,
|
MODEL_8x22B,
|
||||||
MODEL_16x12B,
|
MODEL_16x12B,
|
||||||
|
MODEL_10B_128x3_66B,
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t kiB = 1024;
|
static const size_t kiB = 1024;
|
||||||
@ -1774,6 +1803,7 @@ static const size_t GiB = 1024*MiB;
|
|||||||
struct llama_hparams {
|
struct llama_hparams {
|
||||||
bool vocab_only;
|
bool vocab_only;
|
||||||
bool rope_finetuned;
|
bool rope_finetuned;
|
||||||
|
bool use_par_res;
|
||||||
|
|
||||||
uint32_t n_vocab;
|
uint32_t n_vocab;
|
||||||
uint32_t n_ctx_train; // context size the model was trained on
|
uint32_t n_ctx_train; // context size the model was trained on
|
||||||
@ -1964,6 +1994,7 @@ struct llama_layer {
|
|||||||
struct ggml_tensor * ffn_norm_b;
|
struct ggml_tensor * ffn_norm_b;
|
||||||
struct ggml_tensor * layer_out_norm;
|
struct ggml_tensor * layer_out_norm;
|
||||||
struct ggml_tensor * layer_out_norm_b;
|
struct ggml_tensor * layer_out_norm_b;
|
||||||
|
struct ggml_tensor * ffn_norm_exps;
|
||||||
|
|
||||||
// ff
|
// ff
|
||||||
struct ggml_tensor * ffn_gate; // w1
|
struct ggml_tensor * ffn_gate; // w1
|
||||||
@ -3117,7 +3148,7 @@ static bool llama_cache_find_slot(
|
|||||||
if (kv_size > 0) {
|
if (kv_size > 0) {
|
||||||
// one KV cell per token
|
// one KV cell per token
|
||||||
if (n_tokens > kv_size) {
|
if (n_tokens > kv_size) {
|
||||||
LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, kv_size);
|
LLAMA_LOG_ERROR("%s: n_tokens=%d > kv_size=%d\n", __func__, n_tokens, kv_size);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4716,40 +4747,48 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
|||||||
|
|
||||||
static const char * llama_model_type_name(e_model type) {
|
static const char * llama_model_type_name(e_model type) {
|
||||||
switch (type) {
|
switch (type) {
|
||||||
case MODEL_17M: return "17M";
|
case MODEL_14M: return "14M";
|
||||||
case MODEL_22M: return "22M";
|
case MODEL_17M: return "17M";
|
||||||
case MODEL_33M: return "33M";
|
case MODEL_22M: return "22M";
|
||||||
case MODEL_109M: return "109M";
|
case MODEL_33M: return "33M";
|
||||||
case MODEL_137M: return "137M";
|
case MODEL_70M: return "70M";
|
||||||
case MODEL_335M: return "335M";
|
case MODEL_109M: return "109M";
|
||||||
case MODEL_0_5B: return "0.5B";
|
case MODEL_137M: return "137M";
|
||||||
case MODEL_1B: return "1B";
|
case MODEL_160M: return "160M";
|
||||||
case MODEL_2B: return "2B";
|
case MODEL_335M: return "335M";
|
||||||
case MODEL_3B: return "3B";
|
case MODEL_410M: return "410M";
|
||||||
case MODEL_4B: return "4B";
|
case MODEL_0_5B: return "0.5B";
|
||||||
case MODEL_7B: return "7B";
|
case MODEL_1B: return "1B";
|
||||||
case MODEL_8B: return "8B";
|
case MODEL_1_4B: return "1.4B";
|
||||||
case MODEL_12B: return "12B";
|
case MODEL_2B: return "2B";
|
||||||
case MODEL_13B: return "13B";
|
case MODEL_2_8B: return "2.8B";
|
||||||
case MODEL_14B: return "14B";
|
case MODEL_3B: return "3B";
|
||||||
case MODEL_15B: return "15B";
|
case MODEL_4B: return "4B";
|
||||||
case MODEL_20B: return "20B";
|
case MODEL_6_9B: return "6.9B";
|
||||||
case MODEL_30B: return "30B";
|
case MODEL_7B: return "7B";
|
||||||
case MODEL_34B: return "34B";
|
case MODEL_8B: return "8B";
|
||||||
case MODEL_35B: return "35B";
|
case MODEL_12B: return "12B";
|
||||||
case MODEL_40B: return "40B";
|
case MODEL_13B: return "13B";
|
||||||
case MODEL_65B: return "65B";
|
case MODEL_14B: return "14B";
|
||||||
case MODEL_70B: return "70B";
|
case MODEL_15B: return "15B";
|
||||||
case MODEL_314B: return "314B";
|
case MODEL_20B: return "20B";
|
||||||
case MODEL_SMALL: return "0.1B";
|
case MODEL_30B: return "30B";
|
||||||
case MODEL_MEDIUM: return "0.4B";
|
case MODEL_34B: return "34B";
|
||||||
case MODEL_LARGE: return "0.8B";
|
case MODEL_35B: return "35B";
|
||||||
case MODEL_XL: return "1.5B";
|
case MODEL_40B: return "40B";
|
||||||
case MODEL_A2_7B: return "A2.7B";
|
case MODEL_65B: return "65B";
|
||||||
case MODEL_8x7B: return "8x7B";
|
case MODEL_70B: return "70B";
|
||||||
case MODEL_8x22B: return "8x22B";
|
case MODEL_314B: return "314B";
|
||||||
case MODEL_16x12B: return "16x12B";
|
case MODEL_SMALL: return "0.1B";
|
||||||
default: return "?B";
|
case MODEL_MEDIUM: return "0.4B";
|
||||||
|
case MODEL_LARGE: return "0.8B";
|
||||||
|
case MODEL_XL: return "1.5B";
|
||||||
|
case MODEL_A2_7B: return "A2.7B";
|
||||||
|
case MODEL_8x7B: return "8x7B";
|
||||||
|
case MODEL_8x22B: return "8x22B";
|
||||||
|
case MODEL_16x12B: return "16x12B";
|
||||||
|
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
||||||
|
default: return "?B";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5246,6 +5285,65 @@ static void llm_load_hparams(
|
|||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_GPTNEOX:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||||
|
ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 6:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 512: model.type = e_model::MODEL_14M; break;
|
||||||
|
case 2048: model.type = e_model::MODEL_70M; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 12:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 3072: model.type = e_model::MODEL_160M; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 16:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 8192: model.type = e_model::MODEL_1B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 24:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 4096: model.type = e_model::MODEL_410M; break;
|
||||||
|
case 8192: model.type = e_model::MODEL_1_4B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 32:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 10240: model.type = e_model::MODEL_2_8B; break;
|
||||||
|
case 16384: model.type = e_model::MODEL_6_9B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 36:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 20480: model.type = e_model::MODEL_12B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
case 44:
|
||||||
|
switch (hparams.n_ff) {
|
||||||
|
case 24576: model.type = e_model::MODEL_20B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
} break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
case LLM_ARCH_ARCTIC:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
|
if (hparams.n_expert == 128) {
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -7106,6 +7204,81 @@ static bool llm_load_tensors(
|
|||||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_GPTNEOX:
|
||||||
|
{
|
||||||
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||||
|
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||||
|
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||||||
|
|
||||||
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||||
|
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||||
|
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
case LLM_ARCH_ARCTIC:
|
||||||
|
{
|
||||||
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (model.output == NULL) {
|
||||||
|
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||||
|
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||||
|
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||||
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
|
|
||||||
|
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
|
||||||
|
|
||||||
|
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||||||
|
layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
|
||||||
|
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
|
||||||
|
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
||||||
|
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
throw std::runtime_error("unknown architecture");
|
throw std::runtime_error("unknown architecture");
|
||||||
}
|
}
|
||||||
@ -7695,7 +7868,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||||||
|
|
||||||
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
||||||
|
|
||||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
|
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
|
||||||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -7704,7 +7877,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||||
cb(kq, "kq", il);
|
cb(kq, "kq", il);
|
||||||
|
|
||||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
|
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
|
||||||
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||||
@ -11767,6 +11940,274 @@ struct llm_build_context {
|
|||||||
|
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_gptneox() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm,
|
||||||
|
model.layers[il].attn_norm_b,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||||
|
cb(cur, "wqkv", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||||
|
cb(cur, "bqkv", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
|
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
|
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||||
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ffn
|
||||||
|
if (hparams.use_par_res) {
|
||||||
|
// attention and ffn are computed in parallel
|
||||||
|
// x = x + attn(ln1(x)) + ffn(ln2(x))
|
||||||
|
|
||||||
|
struct ggml_tensor * attn_out = cur;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].ffn_norm,
|
||||||
|
model.layers[il].ffn_norm_b,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = llm_build_ffn(ctx0, cur,
|
||||||
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
|
NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, inpL);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
inpL = ggml_add(ctx0, cur, attn_out);
|
||||||
|
cb(inpL, "l_out", il);
|
||||||
|
} else {
|
||||||
|
// attention and ffn are computed sequentially
|
||||||
|
// x = x + attn(ln1(x))
|
||||||
|
// x = x + ffn(ln2(x))
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].ffn_norm,
|
||||||
|
model.layers[il].ffn_norm_b,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = llm_build_ffn(ctx0, cur,
|
||||||
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
|
NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
inpL = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(inpL, "l_out", il);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.output_norm,
|
||||||
|
model.output_norm_b,
|
||||||
|
LLM_NORM, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_arctic() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||||
|
model.layers[il].wo, NULL,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = llm_build_ffn(ctx0, cur,
|
||||||
|
model.layers[il].ffn_up, NULL,
|
||||||
|
model.layers[il].ffn_gate, NULL,
|
||||||
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(ffn_out, "ffn_out", il);
|
||||||
|
|
||||||
|
// MoE
|
||||||
|
cur = llm_build_norm(ctx0, inpSA, hparams,
|
||||||
|
model.layers[il].ffn_norm_exps, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "ffn_norm_exps", il);
|
||||||
|
|
||||||
|
cur = llm_build_moe_ffn(ctx0, cur,
|
||||||
|
model.layers[il].ffn_gate_inp,
|
||||||
|
model.layers[il].ffn_up_exps,
|
||||||
|
model.layers[il].ffn_gate_exps,
|
||||||
|
model.layers[il].ffn_down_exps,
|
||||||
|
n_expert, n_expert_used,
|
||||||
|
LLM_FFN_SILU, true,
|
||||||
|
cb, il);
|
||||||
|
cb(cur, "ffn_moe_out", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_out);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||||||
|
if (layer_dir != nullptr) {
|
||||||
|
cur = ggml_add(ctx0, cur, layer_dir);
|
||||||
|
}
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
||||||
@ -11964,6 +12405,14 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
{
|
{
|
||||||
result = llm.build_olmo();
|
result = llm.build_olmo();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_GPTNEOX:
|
||||||
|
{
|
||||||
|
result = llm.build_gptneox();
|
||||||
|
} break;
|
||||||
|
case LLM_ARCH_ARCTIC:
|
||||||
|
{
|
||||||
|
result = llm.build_arctic();
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
@ -15485,8 +15934,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||||
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
|
|
||||||
(qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
|
|
||||||
if (qs.model.type == MODEL_70B) {
|
if (qs.model.type == MODEL_70B) {
|
||||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||||
@ -16957,7 +17404,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
// these models do not use RoPE
|
// these models do not use RoPE
|
||||||
case LLM_ARCH_GPT2:
|
case LLM_ARCH_GPT2:
|
||||||
case LLM_ARCH_GPTJ:
|
case LLM_ARCH_GPTJ:
|
||||||
case LLM_ARCH_GPTNEOX:
|
|
||||||
case LLM_ARCH_MPT:
|
case LLM_ARCH_MPT:
|
||||||
case LLM_ARCH_REFACT:
|
case LLM_ARCH_REFACT:
|
||||||
case LLM_ARCH_BLOOM:
|
case LLM_ARCH_BLOOM:
|
||||||
@ -16978,6 +17424,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
case LLM_ARCH_XVERSE:
|
case LLM_ARCH_XVERSE:
|
||||||
case LLM_ARCH_COMMAND_R:
|
case LLM_ARCH_COMMAND_R:
|
||||||
case LLM_ARCH_OLMO:
|
case LLM_ARCH_OLMO:
|
||||||
|
case LLM_ARCH_ARCTIC:
|
||||||
return LLAMA_ROPE_TYPE_NORM;
|
return LLAMA_ROPE_TYPE_NORM;
|
||||||
|
|
||||||
// the pairs of head values are offset by n_rot/2
|
// the pairs of head values are offset by n_rot/2
|
||||||
@ -16994,6 +17441,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
case LLM_ARCH_PHI3:
|
case LLM_ARCH_PHI3:
|
||||||
case LLM_ARCH_GEMMA:
|
case LLM_ARCH_GEMMA:
|
||||||
case LLM_ARCH_STARCODER2:
|
case LLM_ARCH_STARCODER2:
|
||||||
|
case LLM_ARCH_GPTNEOX:
|
||||||
return LLAMA_ROPE_TYPE_NEOX;
|
return LLAMA_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
// all model arches should be listed explicitly here
|
// all model arches should be listed explicitly here
|
||||||
@ -18424,6 +18872,14 @@ void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_
|
|||||||
ctx->cparams.n_threads_batch = n_threads_batch;
|
ctx->cparams.n_threads_batch = n_threads_batch;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint32_t llama_n_threads(struct llama_context * ctx) {
|
||||||
|
return ctx->cparams.n_threads;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t llama_n_threads_batch(struct llama_context * ctx) {
|
||||||
|
return ctx->cparams.n_threads_batch;
|
||||||
|
}
|
||||||
|
|
||||||
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
|
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
|
||||||
ctx->abort_callback = abort_callback;
|
ctx->abort_callback = abort_callback;
|
||||||
ctx->abort_callback_data = abort_callback_data;
|
ctx->abort_callback_data = abort_callback_data;
|
||||||
@ -18866,6 +19322,15 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
// llama2 templates seem to not care about "add_generation_prompt"
|
// llama2 templates seem to not care about "add_generation_prompt"
|
||||||
|
} else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
|
||||||
|
// Phi 3
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "<|assistant|>\n";
|
||||||
|
}
|
||||||
} else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
|
} else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
|
||||||
// zephyr template
|
// zephyr template
|
||||||
for (auto message : chat) {
|
for (auto message : chat) {
|
||||||
@ -18998,15 +19463,6 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
|
|
||||||
// Phi 3
|
|
||||||
for (auto message : chat) {
|
|
||||||
std::string role(message->role);
|
|
||||||
ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
|
|
||||||
}
|
|
||||||
if (add_ass) {
|
|
||||||
ss << "<|assistant|>\n";
|
|
||||||
}
|
|
||||||
} else {
|
} else {
|
||||||
// template not supported
|
// template not supported
|
||||||
return -1;
|
return -1;
|
||||||
|
6
llama.h
6
llama.h
@ -809,6 +809,12 @@ extern "C" {
|
|||||||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||||||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||||||
|
|
||||||
|
// Get the number of threads used for generation of a single token.
|
||||||
|
LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Get the number of threads used for prompt and batch processing (multiple token).
|
||||||
|
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
|
||||||
|
|
||||||
// Set whether to use causal attention or not
|
// Set whether to use causal attention or not
|
||||||
// If set to true, the model will only attend to the past tokens
|
// If set to true, the model will only attend to the past tokens
|
||||||
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
|
||||||
|
@ -49,8 +49,14 @@ int main(void) {
|
|||||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
|
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
|
||||||
// Llama-3
|
// Llama-3
|
||||||
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
||||||
// Phi-3
|
//Phi-3-mini
|
||||||
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}"
|
"{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
|
||||||
|
//Phi-3-small
|
||||||
|
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
||||||
|
//Phi-3-medium
|
||||||
|
"{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
|
||||||
|
//Phi-3-vision
|
||||||
|
"{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}"
|
||||||
};
|
};
|
||||||
std::vector<std::string> expected_output = {
|
std::vector<std::string> expected_output = {
|
||||||
// teknium/OpenHermes-2.5-Mistral-7B
|
// teknium/OpenHermes-2.5-Mistral-7B
|
||||||
@ -79,8 +85,14 @@ int main(void) {
|
|||||||
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
|
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
|
||||||
// Llama 3
|
// Llama 3
|
||||||
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
|
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
|
||||||
// Phi 3
|
//Phi-3-mini
|
||||||
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
||||||
|
//Phi-3-small
|
||||||
|
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
||||||
|
//Phi-3-medium
|
||||||
|
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
||||||
|
//Phi-3-vision
|
||||||
|
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
|
||||||
};
|
};
|
||||||
std::vector<char> formatted_chat(1024);
|
std::vector<char> formatted_chat(1024);
|
||||||
int32_t res;
|
int32_t res;
|
||||||
|
@ -1515,90 +1515,50 @@ int main(int argc, const char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// flash_attn f32
|
// flash_attn f32
|
||||||
{
|
// TODO: adapt to ggml_flash_attn_ext() changes
|
||||||
srand(seed);
|
//{
|
||||||
const int nargs = 3;
|
// srand(seed);
|
||||||
|
// const int nargs = 3;
|
||||||
|
|
||||||
int64_t ne2[4];
|
// int64_t ne2[4];
|
||||||
|
|
||||||
get_random_dims(ne2, 4);
|
// get_random_dims(ne2, 4);
|
||||||
int64_t D = ne2[0];
|
// int64_t D = ne2[0];
|
||||||
int64_t N = ne2[1];
|
// int64_t N = ne2[1];
|
||||||
int64_t M = ne2[2] + N;
|
// int64_t M = ne2[2] + N;
|
||||||
int64_t B = ne2[3];
|
// int64_t B = ne2[3];
|
||||||
|
|
||||||
for (int masked = 0; masked <= 1; ++masked) {
|
// for (int masked = 0; masked <= 1; ++masked) {
|
||||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
// for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||||
int max_nrep = (ndims >= 3) ? 2 : 1;
|
// int max_nrep = (ndims >= 3) ? 2 : 1;
|
||||||
for (int nrep = 1; nrep < max_nrep; ++nrep) {
|
// for (int nrep = 1; nrep < max_nrep; ++nrep) {
|
||||||
int64_t neq[4] = { D, N, B*nrep, ne[3] };
|
// int64_t neq[4] = { D, N, B*nrep, ne[3] };
|
||||||
int64_t nek[4] = { D, M, B, ne[3] };
|
// int64_t nek[4] = { D, M, B, ne[3] };
|
||||||
int64_t nev[4] = { M, D, B, ne[3] };
|
// int64_t nev[4] = { M, D, B, ne[3] };
|
||||||
if (ndims == 2) {
|
// if (ndims == 2) {
|
||||||
neq[2] = 1; neq[3] = 1;
|
// neq[2] = 1; neq[3] = 1;
|
||||||
nek[2] = 1; nek[3] = 1;
|
// nek[2] = 1; nek[3] = 1;
|
||||||
nev[2] = 1; nev[3] = 1;
|
// nev[2] = 1; nev[3] = 1;
|
||||||
} else if (ndims == 3) {
|
// } else if (ndims == 3) {
|
||||||
neq[3] = 1;
|
// neq[3] = 1;
|
||||||
nek[3] = 1;
|
// nek[3] = 1;
|
||||||
nev[3] = 1;
|
// nev[3] = 1;
|
||||||
}
|
// }
|
||||||
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
// x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
||||||
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
// x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
||||||
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
// x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
||||||
ggml_set_param(ctx0, x[0]);
|
// ggml_set_param(ctx0, x[0]);
|
||||||
ggml_set_param(ctx0, x[1]);
|
// ggml_set_param(ctx0, x[1]);
|
||||||
ggml_set_param(ctx0, x[2]);
|
// ggml_set_param(ctx0, x[2]);
|
||||||
|
|
||||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
// struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
||||||
|
|
||||||
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
// check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
||||||
}
|
// }
|
||||||
}
|
// }
|
||||||
}
|
// }
|
||||||
}
|
//}
|
||||||
|
|
||||||
// flash_attn f16, not yet fully implemented
|
|
||||||
if(0)
|
|
||||||
{
|
|
||||||
srand(seed);
|
|
||||||
const int nargs = 3;
|
|
||||||
|
|
||||||
int64_t ne2[4];
|
|
||||||
|
|
||||||
get_random_dims(ne2, 4);
|
|
||||||
int64_t D = ne2[0];
|
|
||||||
int64_t N = ne2[1];
|
|
||||||
int64_t M = ne2[2] + N;
|
|
||||||
int64_t B = ne2[3];
|
|
||||||
|
|
||||||
for (int masked = 0; masked <= 1; ++masked) {
|
|
||||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
|
||||||
int64_t neq[4] = { D, N, B, ne[3] };
|
|
||||||
int64_t nek[4] = { D, M, B, ne[3] };
|
|
||||||
int64_t nev[4] = { M, D, B, ne[3] };
|
|
||||||
if (ndims == 2) {
|
|
||||||
neq[2] = 1; neq[3] = 1;
|
|
||||||
nek[2] = 1; nek[3] = 1;
|
|
||||||
nev[2] = 1; nev[3] = 1;
|
|
||||||
} else if (ndims == 3) {
|
|
||||||
neq[3] = 1;
|
|
||||||
nek[3] = 1;
|
|
||||||
nev[3] = 1;
|
|
||||||
}
|
|
||||||
x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
|
||||||
x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
|
||||||
x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
|
||||||
ggml_set_param(ctx0, x[0]);
|
|
||||||
ggml_set_param(ctx0, x[1]);
|
|
||||||
ggml_set_param(ctx0, x[2]);
|
|
||||||
|
|
||||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
|
||||||
|
|
||||||
check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ggml_free(ctx0);
|
ggml_free(ctx0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user