mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
embedding : print cosine similarity (#899)
This commit is contained in:
parent
19885d205e
commit
0fd6c1f015
@ -1877,3 +1877,16 @@ void llama_embd_normalize(const float * inp, float * out, int n) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||||
|
double sum = 0.0;
|
||||||
|
double sum1 = 0.0;
|
||||||
|
double sum2 = 0.0;
|
||||||
|
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
sum += embd1[i] * embd2[i];
|
||||||
|
sum1 += embd1[i] * embd1[i];
|
||||||
|
sum2 += embd2[i] * embd2[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return sum / (sqrt(sum1) * sqrt(sum2));
|
||||||
|
}
|
||||||
|
@ -268,3 +268,4 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
|
|||||||
|
|
||||||
void llama_embd_normalize(const float * inp, float * out, int n);
|
void llama_embd_normalize(const float * inp, float * out, int n);
|
||||||
|
|
||||||
|
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||||
|
@ -168,14 +168,25 @@ int main(int argc, char ** argv) {
|
|||||||
batch_decode(ctx, batch, out, s, n_embd);
|
batch_decode(ctx, batch, out, s, n_embd);
|
||||||
|
|
||||||
// print first 3 embeddings
|
// print first 3 embeddings
|
||||||
|
fprintf(stdout, "\n");
|
||||||
for (int j = 0; j < std::min(3, n_prompts); j++) {
|
for (int j = 0; j < std::min(3, n_prompts); j++) {
|
||||||
fprintf(stderr, "embedding %d: ", j);
|
fprintf(stdout, "embedding %d: ", j);
|
||||||
for (int i = 0; i < n_embd; i++) {
|
for (int i = 0; i < std::min(16, n_embd); i++) {
|
||||||
fprintf(stderr, "%f ", emb[j * n_embd + i]);
|
fprintf(stdout, "%f ", emb[j * n_embd + i]);
|
||||||
}
|
}
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stdout, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
// print cosine similarity matrix
|
||||||
|
fprintf(stdout, "\n");
|
||||||
|
printf("cosine similarity matrix:\n\n");
|
||||||
|
for (int i = 0; i < n_prompts; i++) {
|
||||||
|
for (int j = 0; j < n_prompts; j++) {
|
||||||
|
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||||
|
fprintf(stdout, "%6.2f ", sim);
|
||||||
|
}
|
||||||
|
fprintf(stdout, "\n");
|
||||||
}
|
}
|
||||||
fprintf(stderr, "\n");
|
|
||||||
|
|
||||||
// clean up
|
// clean up
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
@ -6,22 +6,6 @@
|
|||||||
|
|
||||||
// #define GRIT_DEBUG
|
// #define GRIT_DEBUG
|
||||||
|
|
||||||
static float dot_product(const std::vector<float> & v1, const std::vector<float> & v2) {
|
|
||||||
float dot = 0.0f;
|
|
||||||
for (uint64_t i = 0; i < v1.size(); ++i) {
|
|
||||||
dot += v1[i] * v2[i];
|
|
||||||
}
|
|
||||||
return dot;
|
|
||||||
}
|
|
||||||
|
|
||||||
static float norm(const std::vector<float> & v) {
|
|
||||||
return std::sqrt(dot_product(v, v));
|
|
||||||
}
|
|
||||||
|
|
||||||
static float cosine_similarity(const std::vector<float> & v1, const std::vector<float> & v2) {
|
|
||||||
return dot_product(v1, v2) / (norm(v1) * norm(v2));
|
|
||||||
}
|
|
||||||
|
|
||||||
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
|
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
|
||||||
std::vector<std::vector<float>> result;
|
std::vector<std::vector<float>> result;
|
||||||
|
|
||||||
@ -203,10 +187,12 @@ int main(int argc, char * argv[]) {
|
|||||||
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
||||||
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
||||||
|
|
||||||
const float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
|
const int n_embd = llama_n_embd(mdl);
|
||||||
const float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
|
|
||||||
const float cosine_sim_q1_d0 = cosine_similarity(q_rep[1], d_rep[0]);
|
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||||
const float cosine_sim_q1_d1 = cosine_similarity(q_rep[1], d_rep[1]);
|
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||||
|
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||||
|
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||||
|
|
||||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
||||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user