From 0fe321031a5c670ab5fb5f49d69c4c91d783c93f Mon Sep 17 00:00:00 2001 From: cebtenzzre Date: Mon, 2 Oct 2023 14:58:46 -0400 Subject: [PATCH] gguf : general usability improvements (#3409) --- convert.py | 5 +- .../convert-finetune-checkpoint-to-gguf.py | 2 +- .../convert-train-checkpoint-to-gguf.py | 2 +- gguf-py/gguf/gguf.py | 210 ++++++++++-------- gguf-py/pyproject.toml | 2 +- 5 files changed, 120 insertions(+), 101 deletions(-) diff --git a/convert.py b/convert.py index 8bb6c7e41..e14b9ef80 100755 --- a/convert.py +++ b/convert.py @@ -41,8 +41,7 @@ if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): NDArray: TypeAlias = 'np.ndarray[Any, Any]' -ARCH=gguf.MODEL_ARCH.LLAMA -NAMES=gguf.MODEL_TENSOR_NAMES[ARCH] +ARCH = gguf.MODEL_ARCH.LLAMA DEFAULT_CONCURRENCY = 8 # @@ -953,7 +952,7 @@ class OutputFile: of.close() def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: - wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type + wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): return GGMLFileType.AllF32 diff --git a/examples/finetune/convert-finetune-checkpoint-to-gguf.py b/examples/finetune/convert-finetune-checkpoint-to-gguf.py index 96d6633ed..c8e14da87 100644 --- a/examples/finetune/convert-finetune-checkpoint-to-gguf.py +++ b/examples/finetune/convert-finetune-checkpoint-to-gguf.py @@ -313,7 +313,7 @@ class ModelParams: gguf_writer.add_feed_forward_length(self.get_n_ff()) def tensor_name(key, bid=None, suffix=".weight"): - return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + suffix + return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix class Layer: def __init__(self, params, lora_params, bid): diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py index 351e7bc2d..887ed2e21 100644 --- a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py +++ b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py @@ -364,7 +364,7 @@ class ModelParams: gguf_writer.add_feed_forward_length(self.get_n_ff()) def tensor_name(key, bid=None): - return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight" + return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight" class Layer: def __init__(self, params, bid): diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index 598cf8e59..e83187d30 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -118,76 +118,97 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.STARCODER: "starcoder", } -MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { - MODEL_ARCH.LLAMA: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - }, - MODEL_ARCH.GPTNEOX: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - }, - MODEL_ARCH.FALCON: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - }, - MODEL_ARCH.BAICHUAN: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - }, - MODEL_ARCH.STARCODER: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - }, - MODEL_ARCH.GPT2: { +TENSOR_NAMES: dict[MODEL_TENSOR, str] = { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", +} + +MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { + MODEL_ARCH.LLAMA: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.GPTNEOX: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.FALCON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_NORM_2, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.BAICHUAN: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.STARCODER: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.POS_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], + MODEL_ARCH.GPT2: [ # TODO - }, + ], # TODO } @@ -338,28 +359,24 @@ class TensorNameMap: mapping: dict[str, tuple[MODEL_TENSOR, str]] - tensor_names: dict[MODEL_TENSOR, str] - def __init__(self, arch: MODEL_ARCH, n_blocks: int): - mapping = self.mapping = {} - tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch] + self.mapping = {} for tensor, keys in self.mappings_cfg.items(): - tensor_name = tensor_names.get(tensor) - if tensor_name is None: + if tensor not in MODEL_TENSORS[arch]: continue - mapping[tensor_name] = (tensor, tensor_name) + tensor_name = TENSOR_NAMES[tensor] + self.mapping[tensor_name] = (tensor, tensor_name) for key in keys: - mapping[key] = (tensor, tensor_name) + self.mapping[key] = (tensor, tensor_name) for bid in range(n_blocks): for tensor, keys in self.block_mappings_cfg.items(): - tensor_name = tensor_names.get(tensor) - if tensor_name is None: + if tensor not in MODEL_TENSORS[arch]: continue - tensor_name = tensor_name.format(bid = bid) - mapping[tensor_name] = (tensor, tensor_name) + tensor_name = TENSOR_NAMES[tensor].format(bid = bid) + self.mapping[tensor_name] = (tensor, tensor_name) for key in keys: key = key.format(bid = bid) - mapping[key] = (tensor, tensor_name) + self.mapping[key] = (tensor, tensor_name) def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) @@ -800,22 +817,25 @@ class SpecialVocab: special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad') special_token_ids: dict[str, int] = {} - def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None): + def __init__( + self, path: str | os.PathLike[str], load_merges: bool = False, + special_token_types: tuple[str, ...] | None = None, + ): self.special_token_ids = {} self.load_merges = load_merges if special_token_types is not None: self.special_token_types = special_token_types - self.load(path) + self._load(Path(path)) - def load(self, path: Path): - if not self.try_load_from_tokenizer_json(path): - self.try_load_from_config_json(path) + def _load(self, path: Path) -> None: + if not self._try_load_from_tokenizer_json(path): + self._try_load_from_config_json(path) - def try_load_from_tokenizer_json(self, path: Path) -> bool: + def _try_load_from_tokenizer_json(self, path: Path) -> bool: tokenizer_file = path / 'tokenizer.json' if not tokenizer_file.is_file(): return False - with open(tokenizer_file, 'r', encoding = 'utf-8') as f: + with open(tokenizer_file, encoding = 'utf-8') as f: tokenizer = json.load(f) if self.load_merges: merges = tokenizer.get('model', {}).get('merges') @@ -825,7 +845,7 @@ class SpecialVocab: added_tokens = tokenizer.get('added_tokens') if added_tokens is None or not tokenizer_config_file.is_file(): return True - with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f: + with open(tokenizer_config_file, encoding = 'utf-8') as f: tokenizer_config = json.load(f) for typ in self.special_token_types: entry = tokenizer_config.get(f'{typ}_token') @@ -844,11 +864,11 @@ class SpecialVocab: break return True - def try_load_from_config_json(self, path: Path) -> bool: + def _try_load_from_config_json(self, path: Path) -> bool: config_file = path / 'config.json' if not config_file.is_file(): return False - with open(config_file, 'r', encoding = 'utf-8') as f: + with open(config_file, encoding = 'utf-8') as f: config = json.load(f) for typ in self.special_token_types: maybe_token_id = config.get(f'{typ}_token_id') @@ -856,7 +876,7 @@ class SpecialVocab: self.special_token_ids[typ] = maybe_token_id return True - def add_to_gguf(self, gw: GGUFWriter): + def add_to_gguf(self, gw: GGUFWriter) -> None: if len(self.merges) > 0: print(f'gguf: Adding {len(self.merges)} merge(s).') gw.add_token_merges(self.merges) @@ -868,8 +888,8 @@ class SpecialVocab: print(f'gguf: Setting special token type {typ} to {tokid}') handler(tokid) - def __repr__(self): - return f'' + def __repr__(self) -> str: + return f'' # Example usage: diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 9489ccd6f..400607ce1 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.3.3" +version = "0.4.0" description = "Write ML models in GGUF for GGML" authors = ["GGML "] packages = [