mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-23 21:17:54 +01:00
ggml-cuda : use graph allocator (#2684)
use a different function for no_alloc to avoid breaking backwards compat, fixes lora remove 512 n_batch limit fixed 2048 batch size cleanup Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
parent
ef3f333d37
commit
1123f7fbdf
@ -289,7 +289,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_batch = std::stoi(argv[i]);
|
||||
params.n_batch = std::min(512, params.n_batch);
|
||||
} else if (arg == "--keep") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
75
ggml-cuda.cu
75
ggml-cuda.cu
@ -3887,13 +3887,13 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
// rope == RoPE == rotary positional embedding
|
||||
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
|
||||
const float p_delta, const int p_delta_rows, const float theta_scale) {
|
||||
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i = row*ncols + col;
|
||||
|
||||
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
|
||||
@ -3965,8 +3965,8 @@ static __global__ void alibi_f32(const float * x, float * dst, const int ncols,
|
||||
}
|
||||
|
||||
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
||||
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
@ -3982,9 +3982,9 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
|
||||
// values are also not normalized to the maximum value by subtracting it in the exponential function
|
||||
// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
|
||||
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int block_size = blockDim.x;
|
||||
const int tid = threadIdx.x;
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int block_size = blockDim.y;
|
||||
const int tid = threadIdx.y;
|
||||
|
||||
float tmp = 0.0;
|
||||
|
||||
@ -4776,9 +4776,9 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
|
||||
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
|
||||
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||
GGML_ASSERT(nrows % 2 == 0);
|
||||
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
||||
}
|
||||
|
||||
@ -4800,15 +4800,15 @@ static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const
|
||||
}
|
||||
|
||||
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
||||
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, nrows_x, 1);
|
||||
const dim3 block_nums(nrows_x, block_num_x, 1);
|
||||
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
||||
}
|
||||
|
||||
static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(1, nrows_x, 1);
|
||||
const dim3 block_dims(1, WARP_SIZE, 1);
|
||||
const dim3 block_nums(nrows_x, 1, 1);
|
||||
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
|
||||
}
|
||||
|
||||
@ -6313,7 +6313,7 @@ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
return extra;
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
|
||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
|
||||
if (scratch && g_scratch_size == 0) {
|
||||
return;
|
||||
}
|
||||
@ -6322,14 +6322,19 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
||||
const ggml_op src0_op = tensor->src[0]->op;
|
||||
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
||||
ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
|
||||
ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
|
||||
}
|
||||
}
|
||||
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
|
||||
ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
|
||||
ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
|
||||
if (scratch && no_alloc) {
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_tensor_extra_gpu * extra;
|
||||
|
||||
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
|
||||
@ -6381,16 +6386,48 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) {
|
||||
if (g_scratch_size == 0) {
|
||||
return;
|
||||
}
|
||||
if (g_scratch_buffer == nullptr) {
|
||||
CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size));
|
||||
}
|
||||
|
||||
struct ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
|
||||
|
||||
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
|
||||
tensor->op == GGML_OP_VIEW;
|
||||
|
||||
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
|
||||
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
||||
size_t view_offset = 0;
|
||||
if (tensor->op == GGML_OP_VIEW) {
|
||||
memcpy(&view_offset, tensor->op_params, sizeof(size_t));
|
||||
}
|
||||
extra->data_device[g_main_device] = src0_ddc + view_offset;
|
||||
} else {
|
||||
extra->data_device[g_main_device] = (char *) g_scratch_buffer + offset;
|
||||
}
|
||||
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, true, false);
|
||||
ggml_cuda_assign_buffers_impl(tensor, true, false, false);
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, true, false, true);
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, false);
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, false, false);
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, true);
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, true, false);
|
||||
}
|
||||
|
||||
void ggml_cuda_set_main_device(int main_device) {
|
||||
|
@ -16,9 +16,14 @@ GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const str
|
||||
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
||||
|
||||
GGML_API void ggml_cuda_set_main_device(int main_device);
|
||||
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
|
239
llama.cpp
239
llama.cpp
@ -10,13 +10,7 @@
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#if !defined(GGML_USE_CUBLAS)
|
||||
# include "ggml-alloc.h"
|
||||
# define LLAMA_USE_ALLOCATOR
|
||||
#else
|
||||
# define LLAMA_USE_SCRATCH
|
||||
# define LLAMA_MAX_SCRATCH_BUFFERS 16
|
||||
#endif
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
# include "ggml-cuda.h"
|
||||
@ -588,14 +582,6 @@ struct llama_state {
|
||||
|
||||
static llama_state g_state;
|
||||
|
||||
//
|
||||
// memory sizes (calculated for n_batch == 512)
|
||||
//
|
||||
|
||||
// computed for n_ctx == 2048
|
||||
// TODO: dynamically determine these sizes
|
||||
// needs modifications in ggml
|
||||
|
||||
// available llama models
|
||||
enum e_model {
|
||||
MODEL_UNKNOWN,
|
||||
@ -610,76 +596,6 @@ enum e_model {
|
||||
static const size_t kB = 1024;
|
||||
static const size_t MB = 1024*1024;
|
||||
|
||||
static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
|
||||
{
|
||||
std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB },
|
||||
{ MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB },
|
||||
{ MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB },
|
||||
{ MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB },
|
||||
{ MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess
|
||||
{ MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 128ull * MB },
|
||||
{ MODEL_7B, 160ull * MB },
|
||||
{ MODEL_13B, 192ull * MB },
|
||||
{ MODEL_30B, 256ull * MB },
|
||||
{ MODEL_65B, 384ull * MB }, // guess
|
||||
{ MODEL_70B, 304ull * MB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
||||
// used to store the compute graph tensors + non-scratch data
|
||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 8ull * MB },
|
||||
{ MODEL_7B, 10ull * MB },
|
||||
{ MODEL_13B, 12ull * MB },
|
||||
{ MODEL_30B, 16ull * MB },
|
||||
{ MODEL_65B, 24ull * MB }, // guess
|
||||
{ MODEL_70B, 24ull * MB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
||||
// amount of VRAM needed per batch size to hold temporary results
|
||||
// the values for 3b are not derived from testing but instead chosen conservatively
|
||||
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 512ull * kB },
|
||||
{ MODEL_7B, 512ull * kB },
|
||||
{ MODEL_13B, 640ull * kB },
|
||||
{ MODEL_30B, 768ull * kB },
|
||||
{ MODEL_65B, 1280ull * kB },
|
||||
{ MODEL_70B, 1280ull * kB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
||||
// amount of VRAM needed per batch size and context to hold temporary results
|
||||
// the values for 3b are not derived from testing but instead chosen conservatively
|
||||
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 128ull },
|
||||
{ MODEL_7B, 128ull },
|
||||
{ MODEL_13B, 160ull },
|
||||
{ MODEL_30B, 208ull },
|
||||
{ MODEL_65B, 256ull },
|
||||
{ MODEL_70B, 256ull },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
||||
// default hparams (LLaMA 7B)
|
||||
struct llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
@ -857,11 +773,9 @@ struct llama_context {
|
||||
ggml_metal_free(ctx_metal);
|
||||
}
|
||||
#endif
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
if (alloc) {
|
||||
ggml_allocr_free(alloc);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
std::mt19937 rng;
|
||||
@ -901,17 +815,8 @@ struct llama_context {
|
||||
// memory buffers used to evaluate the model
|
||||
llama_buffer buf_compute;
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
llama_buffer buf_alloc;
|
||||
ggml_allocr * alloc = NULL;
|
||||
#endif
|
||||
|
||||
#ifdef LLAMA_USE_SCRATCH
|
||||
llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
|
||||
|
||||
int buf_last = 0;
|
||||
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
ggml_metal_context * ctx_metal = NULL;
|
||||
@ -920,37 +825,6 @@ struct llama_context {
|
||||
#ifdef GGML_USE_MPI
|
||||
ggml_mpi_context * ctx_mpi = NULL;
|
||||
#endif
|
||||
|
||||
void use_buf(struct ggml_context * ctx, int i) { // NOLINT
|
||||
#if defined(LLAMA_USE_SCRATCH)
|
||||
size_t last_size = 0;
|
||||
|
||||
if (i == -1) {
|
||||
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
||||
} else {
|
||||
auto & buf = buf_scratch[i];
|
||||
last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.data, });
|
||||
}
|
||||
|
||||
if (buf_last >= 0) {
|
||||
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
|
||||
}
|
||||
|
||||
buf_last = i;
|
||||
#else
|
||||
(void) i;
|
||||
(void) ctx;
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t get_buf_max_mem(int i) { // NOLINT
|
||||
#if defined(LLAMA_USE_SCRATCH)
|
||||
return buf_max_size[i];
|
||||
#else
|
||||
(void) i;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@ -1620,7 +1494,6 @@ static void llama_model_load_internal(
|
||||
|
||||
// prepare memory for the weights
|
||||
size_t vram_weights = 0;
|
||||
size_t vram_scratch = 0;
|
||||
{
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_embd_gqa = hparams.n_embd_gqa();
|
||||
@ -1701,13 +1574,6 @@ static void llama_model_load_internal(
|
||||
ctx_size +
|
||||
mmapped_size - vram_weights; // weights in VRAM not in memory
|
||||
|
||||
#ifndef LLAMA_USE_ALLOCATOR
|
||||
mem_required +=
|
||||
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
||||
MEM_REQ_SCRATCH1().at(model.type) +
|
||||
MEM_REQ_EVAL().at(model.type);
|
||||
#endif
|
||||
|
||||
// this is the memory required by one llama_state
|
||||
const size_t mem_required_state =
|
||||
scale*hparams.kv_size();
|
||||
@ -1715,24 +1581,7 @@ static void llama_model_load_internal(
|
||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||
|
||||
(void) vram_scratch;
|
||||
(void) n_batch;
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (low_vram) {
|
||||
LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
|
||||
ggml_cuda_set_scratch_size(0); // disable scratch
|
||||
} else {
|
||||
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
|
||||
const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
|
||||
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
|
||||
ggml_cuda_set_scratch_size(vram_scratch);
|
||||
if (n_gpu_layers > 0) {
|
||||
LLAMA_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
|
||||
__func__, vram_scratch_base / kB, vram_scratch_per_context,
|
||||
(vram_scratch + MB - 1) / MB); // round up
|
||||
}
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
@ -1769,8 +1618,8 @@ static void llama_model_load_internal(
|
||||
|
||||
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
|
||||
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||||
LLAMA_LOG_INFO("%s: total VRAM used: %zu MB\n",
|
||||
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
|
||||
LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n",
|
||||
__func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
@ -1875,9 +1724,7 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
params.no_alloc = true;
|
||||
#endif
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
@ -1889,14 +1736,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
if (tokens) {
|
||||
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
ggml_allocr_alloc(lctx.alloc, inp_tokens);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||
}
|
||||
#else
|
||||
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||
#endif
|
||||
ggml_set_name(inp_tokens, "inp_tokens");
|
||||
|
||||
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
||||
@ -1907,14 +1750,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
ggml_allocr_alloc(lctx.alloc, inpL);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||
}
|
||||
#else
|
||||
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||
#endif
|
||||
}
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
@ -1931,25 +1770,21 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (n_gpu_layers > n_layer) {
|
||||
offload_func_nr = ggml_cuda_assign_buffers;
|
||||
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 1) {
|
||||
offload_func_v = ggml_cuda_assign_buffers;
|
||||
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 2) {
|
||||
offload_func_kq = ggml_cuda_assign_buffers;
|
||||
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
}
|
||||
#else
|
||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
#endif
|
||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
@ -1959,14 +1794,12 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (il >= i_gpu_start) {
|
||||
offload_func = ggml_cuda_assign_buffers;
|
||||
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
lctx.use_buf(ctx0, 0);
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
|
||||
@ -2104,8 +1937,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
ggml_set_name(cur, "result_wo");
|
||||
}
|
||||
|
||||
lctx.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
|
||||
offload_func(inpFF);
|
||||
ggml_set_name(inpFF, "inpFF");
|
||||
@ -2160,8 +1991,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
lctx.use_buf(ctx0, 0);
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
|
||||
@ -2178,8 +2007,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
ggml_set_name(cur, "result_output");
|
||||
|
||||
lctx.use_buf(ctx0, -1);
|
||||
|
||||
// logits -> probs
|
||||
//cur = ggml_soft_max_inplace(ctx0, cur);
|
||||
|
||||
@ -2189,15 +2016,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
|
||||
#if 0
|
||||
LLAMA_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
||||
ggml_used_mem(ctx0)/1024.0/1024.0,
|
||||
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
||||
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
||||
lctx.work_buffer.size()/1024.0/1024.0,
|
||||
n_past, N);
|
||||
#endif
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return gf;
|
||||
@ -2248,14 +2066,26 @@ static bool llama_eval_internal(
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
ggml_allocr_reset(lctx.alloc);
|
||||
#endif
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
for (int i = 0; i < gf->n_leafs; i++) {
|
||||
ggml_tensor * node = gf->leafs[i];
|
||||
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
|
||||
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
ggml_tensor * node = gf->nodes[i];
|
||||
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
|
||||
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
@ -4319,7 +4149,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
ctx->embedding.resize(hparams.n_embd);
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_ALLOCATOR
|
||||
{
|
||||
static const size_t tensor_alignment = 32;
|
||||
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
|
||||
@ -4350,13 +4179,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||
|
||||
// debug - for comparison with scratch buffer
|
||||
//size_t prev_req =
|
||||
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
|
||||
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
|
||||
// MEM_REQ_EVAL().at(ctx->model.type);
|
||||
//LLAMA_LOG_INFO("%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
|
||||
|
||||
// recreate allocator with exact memory requirements
|
||||
ggml_allocr_free(ctx->alloc);
|
||||
|
||||
@ -4366,16 +4188,17 @@ struct llama_context * llama_new_context_with_model(
|
||||
if (ctx->ctx_metal) {
|
||||
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
|
||||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (params.low_vram) {
|
||||
LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
|
||||
ggml_cuda_set_scratch_size(0); // disable scratch
|
||||
} else {
|
||||
ggml_cuda_set_scratch_size(alloc_size);
|
||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
||||
#endif
|
||||
|
||||
#ifdef LLAMA_USE_SCRATCH
|
||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
||||
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
|
Loading…
Reference in New Issue
Block a user