mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
save-load-state : fix example + add ci test (#3655)
* save-load-state : fix example (close #3606) * ci : add test for save-load-state example ggml-ci
This commit is contained in:
parent
5fe268a4d9
commit
1142013da4
@ -208,6 +208,8 @@ function gg_run_open_llama_3b_v2 {
|
|||||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
function check_ppl {
|
function check_ppl {
|
||||||
qnt="$1"
|
qnt="$1"
|
||||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
@ -296,6 +298,7 @@ function gg_sum_open_llama_3b_v2 {
|
|||||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||||
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||||
@ -382,6 +385,8 @@ function gg_run_open_llama_7b_v2 {
|
|||||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||||
|
|
||||||
|
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||||
|
|
||||||
function check_ppl {
|
function check_ppl {
|
||||||
qnt="$1"
|
qnt="$1"
|
||||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||||
@ -470,6 +475,7 @@ function gg_sum_open_llama_7b_v2 {
|
|||||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||||
|
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||||
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||||
|
@ -8,10 +8,7 @@
|
|||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
llama_sampling_params & sparams = params.sampling_params;
|
|
||||||
params.seed = 42;
|
|
||||||
params.n_threads = 4;
|
|
||||||
sparams.repeat_last_n = 64;
|
|
||||||
params.prompt = "The quick brown fox";
|
params.prompt = "The quick brown fox";
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params)) {
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
@ -25,56 +22,49 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
auto n_past = 0;
|
auto n_past = 0;
|
||||||
auto last_n_tokens_data = std::vector<llama_token>(sparams.repeat_last_n, 0);
|
|
||||||
|
std::string result0;
|
||||||
|
std::string result1;
|
||||||
|
|
||||||
// init
|
// init
|
||||||
llama_model * model;
|
llama_model * model;
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
if (model == nullptr) {
|
if (model == nullptr || ctx == nullptr) {
|
||||||
return 1;
|
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||||
}
|
|
||||||
if (ctx == nullptr) {
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// tokenize prompt
|
||||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||||
auto n_prompt_tokens = tokens.size();
|
|
||||||
if (n_prompt_tokens < 1) {
|
|
||||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
|
||||||
llama_free(ctx);
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// evaluate prompt
|
// evaluate prompt
|
||||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
||||||
|
n_past += tokens.size();
|
||||||
|
|
||||||
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
// save state (rng, logits, embedding and kv_cache) to file
|
||||||
n_past += n_prompt_tokens;
|
{
|
||||||
|
std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
|
||||||
|
|
||||||
const size_t state_size = llama_get_state_size(ctx);
|
|
||||||
uint8_t * state_mem = new uint8_t[state_size];
|
|
||||||
|
|
||||||
// Save state (rng, logits, embedding and kv_cache) to file
|
|
||||||
{
|
{
|
||||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||||
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
|
llama_copy_state_data(ctx, state_mem.data()); // could also copy directly to memory mapped file
|
||||||
fwrite(state_mem, 1, state_size, fp_write);
|
fwrite(state_mem.data(), 1, state_mem.size(), fp_write);
|
||||||
fclose(fp_write);
|
fclose(fp_write);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// save state (last tokens)
|
// save state (last tokens)
|
||||||
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
|
|
||||||
const auto n_past_saved = n_past;
|
const auto n_past_saved = n_past;
|
||||||
|
|
||||||
// first run
|
// first run
|
||||||
printf("\n%s", params.prompt.c_str());
|
printf("\nfirst run: %s", params.prompt.c_str());
|
||||||
|
|
||||||
for (auto i = 0; i < params.n_predict; i++) {
|
for (auto i = 0; i < params.n_predict; i++) {
|
||||||
auto * logits = llama_get_logits(ctx);
|
auto * logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab(model);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
@ -83,9 +73,10 @@ int main(int argc, char ** argv) {
|
|||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
auto next_token = llama_sample_token(ctx, &candidates_p);
|
auto next_token = llama_sample_token(ctx, &candidates_p);
|
||||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||||
last_n_tokens_data.push_back(next_token);
|
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
|
result0 += next_token_str;
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
@ -103,32 +94,28 @@ int main(int argc, char ** argv) {
|
|||||||
// make new context
|
// make new context
|
||||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||||
|
|
||||||
// Load state (rng, logits, embedding and kv_cache) from file
|
printf("\nsecond run: %s", params.prompt.c_str());
|
||||||
{
|
|
||||||
FILE *fp_read = fopen("dump_state.bin", "rb");
|
|
||||||
if (state_size != llama_get_state_size(ctx2)) {
|
|
||||||
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
|
||||||
llama_free(ctx2);
|
|
||||||
llama_free_model(model);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
// load state (rng, logits, embedding and kv_cache) from file
|
||||||
if (ret != state_size) {
|
{
|
||||||
|
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
|
||||||
|
|
||||||
|
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||||
|
|
||||||
|
const size_t ret = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||||
|
if (ret != state_mem.size()) {
|
||||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
|
llama_set_state_data(ctx2, state_mem.data());
|
||||||
|
|
||||||
fclose(fp_read);
|
fclose(fp_read);
|
||||||
}
|
}
|
||||||
|
|
||||||
delete[] state_mem;
|
|
||||||
|
|
||||||
// restore state (last tokens)
|
// restore state (last tokens)
|
||||||
last_n_tokens_data = last_n_tokens_data_saved;
|
|
||||||
n_past = n_past_saved;
|
n_past = n_past_saved;
|
||||||
|
|
||||||
// second run
|
// second run
|
||||||
@ -143,10 +130,11 @@ int main(int argc, char ** argv) {
|
|||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
||||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||||
last_n_tokens_data.push_back(next_token);
|
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
result1 += next_token_str;
|
||||||
|
|
||||||
|
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
@ -155,10 +143,17 @@ int main(int argc, char ** argv) {
|
|||||||
n_past += 1;
|
n_past += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("\n\n");
|
printf("\n");
|
||||||
|
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
|
if (result0 != result1) {
|
||||||
|
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "\n%s : success\n", __func__);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user