mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 13:27:21 +01:00
ggml : remove ggml_cplan + rework ggml_cgraph
ggml-ci
This commit is contained in:
parent
ee154457dd
commit
119e0bc9ae
@ -17,17 +17,6 @@ constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
||||
constexpr float rms_norm_eps = 5e-6f;
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * randomize_tensor(
|
||||
struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax
|
||||
) {
|
||||
@ -1514,8 +1503,6 @@ int main(int argc, char ** argv) {
|
||||
int n_tokens = model.hparams.n_ctx;
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
for (int ex=0; ex<n_examples; ++ex) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ compute_size,
|
||||
@ -1542,7 +1529,10 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
|
||||
|
||||
ggml_build_forward_expand(gf, e);
|
||||
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
|
||||
ggml_graph_prepare(gf, 1, nullptr);
|
||||
ggml_graph_work_init(gf, nullptr);
|
||||
ggml_graph_compute(gf);
|
||||
ggml_graph_work_free(gf);
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
@ -1553,7 +1543,10 @@ int main(int argc, char ** argv) {
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(gf, e);
|
||||
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
|
||||
ggml_graph_prepare(gf, 1, nullptr);
|
||||
ggml_graph_work_init(gf, nullptr);
|
||||
ggml_graph_compute(gf);
|
||||
ggml_graph_work_free(gf);
|
||||
|
||||
float error_after_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
@ -1607,7 +1600,10 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
|
||||
|
||||
ggml_build_forward_expand(gf, logits);
|
||||
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
|
||||
ggml_graph_prepare(gf, 1, nullptr);
|
||||
ggml_graph_work_init(gf, nullptr);
|
||||
ggml_graph_compute(gf);
|
||||
ggml_graph_work_free(gf);
|
||||
|
||||
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
|
||||
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
|
||||
|
@ -20,17 +20,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
double sum = 0;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
@ -179,9 +168,8 @@ int main(int argc, char ** argv) {
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||
ggml_graph_prepare(gf, benchmark_params.n_threads, nullptr);
|
||||
ggml_graph_work_init(gf, nullptr);
|
||||
|
||||
TENSOR_DUMP(ggml_graph_node(gf, 0));
|
||||
|
||||
@ -234,7 +222,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
|
||||
ggml_graph_compute(gf31);
|
||||
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
@ -267,8 +255,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
|
||||
ggml_graph_compute(gf32);
|
||||
}
|
||||
|
||||
ggml_graph_work_free(gf);
|
||||
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
printf("=====================================================================================\n");
|
||||
|
@ -183,7 +183,9 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||
ggml_build_forward_expand(gf, flatten);
|
||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||
ggml_graph_prepare(gf, 1, nullptr);
|
||||
ggml_graph_work_init(gf, model.ctx);
|
||||
ggml_graph_compute(gf);
|
||||
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
||||
|
||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||
|
@ -644,20 +644,6 @@ extern "C" {
|
||||
|
||||
typedef struct ggml_threadpool * ggml_threadpool_t;
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
struct ggml_threadpool * threadpool;
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
// scratch buffer
|
||||
struct ggml_scratch {
|
||||
size_t offs;
|
||||
@ -2047,7 +2033,6 @@ extern "C" {
|
||||
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
@ -2065,26 +2050,72 @@ extern "C" {
|
||||
GGML_API size_t ggml_graph_overhead(void);
|
||||
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
||||
|
||||
// TODO: move these declarations above before the ggml_graph API and reorder the implementation order in ggml.c
|
||||
// (unless the code has been moved to a separate source file)
|
||||
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_threadpool * threadpool /* = NULL */ );
|
||||
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
// =================================================================================================
|
||||
// CPU-only API for ggml_cgraph
|
||||
//
|
||||
// TODO: move as a separate backend
|
||||
// NOTE: avoid using, will be removed
|
||||
//
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
// loops through the graph and determines:
|
||||
//
|
||||
// - work size needed for CPU computation
|
||||
// - number of threads to start
|
||||
//
|
||||
GGML_API enum ggml_status ggml_graph_prepare(
|
||||
struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_threadpool * threadpool /* = NULL */ );
|
||||
|
||||
// get the estimated work size for the graph from ggml_graph_prepare()
|
||||
GGML_API size_t ggml_graph_work_size(const struct ggml_cgraph * cgraph);
|
||||
|
||||
// if ctx is NULL, the work buffer will be dynamically allocated. in this case, call ggml_graph_work_free() to free the buffer
|
||||
// otherwise, the work buffer will be allocated in the context. no need to free it
|
||||
GGML_API enum ggml_status ggml_graph_work_init(struct ggml_cgraph * cgraph, struct ggml_context * ctx);
|
||||
GGML_API void ggml_graph_work_free(struct ggml_cgraph * cgraph);
|
||||
|
||||
// note: call ggml_graph_prepare() and ggml_graph_work_init() first
|
||||
//
|
||||
// sample usages:
|
||||
//
|
||||
// - no dynamic allocations:
|
||||
//
|
||||
// ... prepare ggml_context ctx ...
|
||||
//
|
||||
// ggml_graph_prepare (cgraph, n_threads, threadpool);
|
||||
// ggml_graph_work_init(cgraph, ctx);
|
||||
//
|
||||
// ggml_graph_compute (cgraph); // can call many times
|
||||
//
|
||||
// // no need to call ggml_graph_work_free() because it is allocated in ctx
|
||||
//
|
||||
// - dynamic allocations:
|
||||
//
|
||||
// ggml_graph_prepare (cgraph, n_threads, threadpool);
|
||||
// ggml_graph_work_init(cgraph, NULL); // will allocate memory
|
||||
//
|
||||
// ggml_graph_compute (cgraph); // can call many times
|
||||
//
|
||||
// ggml_graph_work_free(cgraph);
|
||||
//
|
||||
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph);
|
||||
|
||||
// end of CPU-only API
|
||||
// =================================================================================================
|
||||
|
||||
GGML_API void ggml_graph_set_abort_callback(struct ggml_cgraph * cgraph, ggml_abort_callback abort_callback, void * abort_data);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
||||
|
||||
@ -2107,6 +2138,7 @@ extern "C" {
|
||||
struct ggml_cgraph * gb_tmp,
|
||||
struct ggml_tensor * * checkpoints,
|
||||
int n_checkpoints);
|
||||
|
||||
//
|
||||
// optimization
|
||||
//
|
||||
|
@ -751,8 +751,10 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
// TODO: this struct should no longer be needed
|
||||
// instead, the new ggml_graph_work_init() + ggml_graph_work_free() API should be enough to replace this
|
||||
// for now, keeping the implementation as it is, to avoid making a mistake
|
||||
struct ggml_backend_plan_cpu {
|
||||
struct ggml_cplan cplan;
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
@ -761,19 +763,19 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
||||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
|
||||
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
||||
ggml_graph_prepare(&cpu_plan->cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
||||
if (cpu_plan->cplan.work_data == NULL) {
|
||||
if (cpu_plan->cgraph.work_size > 0) {
|
||||
cpu_plan->cgraph.work_data = malloc(cpu_plan->cgraph.work_size);
|
||||
if (cpu_plan->cgraph.work_data == NULL) {
|
||||
free(cpu_plan);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cpu_plan->cgraph.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cgraph.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
@ -781,7 +783,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
||||
GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
free(cpu_plan->cplan.work_data);
|
||||
free(cpu_plan->cgraph.work_data);
|
||||
free(cpu_plan);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
@ -790,7 +792,7 @@ GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, g
|
||||
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
return ggml_graph_compute(&cpu_plan->cgraph);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
@ -798,23 +800,24 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
|
||||
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
ggml_graph_prepare(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_ctx->work_size < cplan.work_size) {
|
||||
if (cpu_ctx->work_size < cgraph->work_size) {
|
||||
free(cpu_ctx->work_data);
|
||||
cpu_ctx->work_data = malloc(cplan.work_size);
|
||||
cpu_ctx->work_data = malloc(cgraph->work_size);
|
||||
if (cpu_ctx->work_data == NULL) {
|
||||
cpu_ctx->work_size = 0;
|
||||
return GGML_STATUS_ALLOC_FAILED;
|
||||
}
|
||||
cpu_ctx->work_size = cplan.work_size;
|
||||
cpu_ctx->work_size = cgraph->work_size;
|
||||
}
|
||||
cplan.work_data = cpu_ctx->work_data;
|
||||
cgraph->work_data = cpu_ctx->work_data;
|
||||
cgraph->work_own = false; // always freed by ggml_backend_cpu_graph_plan_free
|
||||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cgraph->abort_callback = cpu_ctx->abort_callback;
|
||||
cgraph->abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
return ggml_graph_compute(cgraph);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
|
@ -773,6 +773,17 @@ struct ggml_cgraph {
|
||||
struct ggml_hash_set visited_hash_set;
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
|
||||
bool work_own;
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
struct ggml_threadpool * threadpool;
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
|
180
ggml/src/ggml.c
180
ggml/src/ggml.c
@ -2001,7 +2001,6 @@ struct ggml_threadpool {
|
||||
ggml_cond_t cond; // cond.var for waiting for new work
|
||||
|
||||
struct ggml_cgraph * cgraph;
|
||||
struct ggml_cplan * cplan;
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
|
||||
@ -19089,14 +19088,21 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz
|
||||
assert(obj_size == (size_t)((char *)p - (char *)cgraph));
|
||||
|
||||
*cgraph = (struct ggml_cgraph) {
|
||||
/*.size =*/ size,
|
||||
/*.n_nodes =*/ 0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ nodes_ptr,
|
||||
/*.grads =*/ grads_ptr,
|
||||
/*.leafs =*/ leafs_ptr,
|
||||
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
|
||||
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
|
||||
/*.size =*/ size,
|
||||
/*.n_nodes =*/ 0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ nodes_ptr,
|
||||
/*.grads =*/ grads_ptr,
|
||||
/*.leafs =*/ leafs_ptr,
|
||||
/*.visited_hash_set =*/ { hash_size, hash_used, hash_keys_ptr },
|
||||
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
|
||||
/*.work_own =*/ false,
|
||||
/*.work_size =*/ 0,
|
||||
/*.work_data =*/ NULL,
|
||||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
|
||||
/*.threadpool =*/ NULL,
|
||||
/*.abort_callback =*/ NULL,
|
||||
/*.abort_callback_data =*/ NULL,
|
||||
};
|
||||
|
||||
ggml_hash_set_reset(&cgraph->visited_hash_set);
|
||||
@ -19110,14 +19116,21 @@ struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
|
||||
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
|
||||
struct ggml_cgraph cgraph = {
|
||||
/*.size =*/ 0,
|
||||
/*.n_nodes =*/ i1 - i0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ cgraph0->nodes + i0,
|
||||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||||
/*.leafs =*/ NULL,
|
||||
/*.hash_table =*/ { 0, NULL, NULL },
|
||||
/*.order =*/ cgraph0->order,
|
||||
/*.size =*/ 0,
|
||||
/*.n_nodes =*/ i1 - i0,
|
||||
/*.n_leafs =*/ 0,
|
||||
/*.nodes =*/ cgraph0->nodes + i0,
|
||||
/*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
|
||||
/*.leafs =*/ NULL,
|
||||
/*.hash_table =*/ { 0, NULL, NULL },
|
||||
/*.order =*/ cgraph0->order,
|
||||
/*.work_own =*/ false,
|
||||
/*.work_size =*/ 0,
|
||||
/*.work_data =*/ NULL,
|
||||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
|
||||
/*.threadpool =*/ NULL,
|
||||
/*.abort_callback =*/ NULL,
|
||||
/*.abort_callback_data =*/ NULL,
|
||||
};
|
||||
|
||||
return cgraph;
|
||||
@ -19753,11 +19766,10 @@ void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
|
||||
#endif
|
||||
}
|
||||
|
||||
struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads,
|
||||
struct ggml_threadpool * threadpool) {
|
||||
|
||||
enum ggml_status ggml_graph_prepare(
|
||||
struct ggml_cgraph * cgraph,
|
||||
int n_threads,
|
||||
struct ggml_threadpool * threadpool) {
|
||||
if (threadpool == NULL) {
|
||||
GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
|
||||
}
|
||||
@ -19767,9 +19779,6 @@ struct ggml_cplan ggml_graph_plan(
|
||||
|
||||
size_t work_size = 0;
|
||||
|
||||
struct ggml_cplan cplan;
|
||||
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||||
|
||||
int max_tasks = 1;
|
||||
|
||||
// thread scheduling for the different operations + work buffer size estimation
|
||||
@ -19921,28 +19930,63 @@ struct ggml_cplan ggml_graph_plan(
|
||||
work_size += CACHE_LINE_SIZE*(n_threads);
|
||||
}
|
||||
|
||||
cplan.threadpool = threadpool;
|
||||
cplan.n_threads = MIN(max_tasks, n_threads);
|
||||
cplan.work_size = work_size;
|
||||
cplan.work_data = NULL;
|
||||
cgraph->threadpool = threadpool;
|
||||
cgraph->n_threads = MIN(max_tasks, n_threads);
|
||||
cgraph->work_size = work_size;
|
||||
|
||||
return cplan;
|
||||
ggml_graph_work_free(cgraph);
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
size_t ggml_graph_work_size(const struct ggml_cgraph * cgraph) {
|
||||
return cgraph->work_size;
|
||||
}
|
||||
|
||||
enum ggml_status ggml_graph_work_init(struct ggml_cgraph * cgraph, struct ggml_context * ctx) {
|
||||
GGML_ASSERT(cgraph->n_threads > 0 && "call ggml_graph_prepare first");
|
||||
|
||||
ggml_graph_work_free(cgraph);
|
||||
|
||||
if (cgraph->work_size > 0) {
|
||||
if (ctx == NULL) {
|
||||
cgraph->work_data = GGML_ALIGNED_MALLOC(cgraph->work_size);
|
||||
if (cgraph->work_data == NULL) {
|
||||
return GGML_STATUS_ALLOC_FAILED;
|
||||
}
|
||||
|
||||
cgraph->work_own = true;
|
||||
} else {
|
||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cgraph->work_size);
|
||||
|
||||
cgraph->work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
|
||||
cgraph->work_own = false;
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
void ggml_graph_work_free(struct ggml_cgraph * cgraph) {
|
||||
if (cgraph->work_data && cgraph->work_own) {
|
||||
GGML_ALIGNED_FREE(cgraph->work_data);
|
||||
cgraph->work_data = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||||
|
||||
const struct ggml_cgraph * cgraph = state->threadpool->cgraph;
|
||||
const struct ggml_cplan * cplan = state->threadpool->cplan;
|
||||
|
||||
set_numa_thread_affinity(state->ith);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ state->threadpool->n_threads_cur,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.threadpool=*/ state->threadpool,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ state->threadpool->n_threads_cur,
|
||||
/*.wsize =*/ cgraph->work_size,
|
||||
/*.wdata =*/ cgraph->work_data,
|
||||
/*.threadpool =*/ state->threadpool,
|
||||
};
|
||||
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
|
||||
@ -19950,7 +19994,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
if (state->ith == 0 && cgraph->abort_callback && cgraph->abort_callback(cgraph->abort_callback_data)) {
|
||||
state->threadpool->ec = GGML_STATUS_ABORTED;
|
||||
}
|
||||
|
||||
@ -20104,14 +20148,12 @@ bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, cons
|
||||
|
||||
static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
struct ggml_threadpool_params * tpp,
|
||||
struct ggml_cgraph * cgraph,
|
||||
struct ggml_cplan * cplan) {
|
||||
struct ggml_cgraph * cgraph) {
|
||||
|
||||
struct ggml_threadpool * threadpool =
|
||||
GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool));
|
||||
{
|
||||
threadpool->cgraph = cgraph;
|
||||
threadpool->cplan = cplan;
|
||||
threadpool->n_graph = 0;
|
||||
threadpool->n_barrier = 0;
|
||||
threadpool->n_barrier_passed = 0;
|
||||
@ -20169,16 +20211,15 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
}
|
||||
|
||||
struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
|
||||
return ggml_threadpool_new_impl(tpp, NULL, NULL);
|
||||
return ggml_threadpool_new_impl(tpp, NULL);
|
||||
}
|
||||
|
||||
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
||||
GGML_ASSERT(cplan);
|
||||
GGML_ASSERT(cplan->n_threads > 0);
|
||||
GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
|
||||
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT((cgraph->n_threads > 0 ) && "call ggml_graph_prepare first");
|
||||
GGML_ASSERT((cgraph->work_size == 0 || cgraph->work_data != NULL) && "call ggml_graph_work_init first");
|
||||
|
||||
int n_threads = cplan->n_threads;
|
||||
struct ggml_threadpool * threadpool = cplan->threadpool;
|
||||
int n_threads = cgraph->n_threads;
|
||||
struct ggml_threadpool * threadpool = cgraph->threadpool;
|
||||
|
||||
bool disposable_threadpool = false;
|
||||
|
||||
@ -20187,19 +20228,18 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
disposable_threadpool = true;
|
||||
|
||||
struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
|
||||
threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
|
||||
threadpool = ggml_threadpool_new_impl(&ttp, cgraph);
|
||||
} else {
|
||||
// Reset some of the parameters that need resetting
|
||||
// No worker threads should be accessing the parameters below at this stage
|
||||
threadpool->cgraph = cgraph;
|
||||
threadpool->cplan = cplan;
|
||||
threadpool->n_threads_cur = n_threads;
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->ec = GGML_STATUS_SUCCESS;
|
||||
threadpool->cgraph = cgraph;
|
||||
threadpool->n_threads_cur = n_threads;
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->ec = GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
if (n_threads > threadpool->n_threads_max) {
|
||||
GGML_PRINT("WARNING: cplan is requesting more threads than the threadpool contains. Expect a bad time!\n");
|
||||
GGML_PRINT("WARNING: cgraph is requesting more threads than the threadpool contains. Expect a bad time!\n");
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
@ -20238,14 +20278,9 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
return ret;
|
||||
}
|
||||
|
||||
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
|
||||
|
||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
|
||||
|
||||
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
void ggml_graph_set_abort_callback(struct ggml_cgraph * cgraph, ggml_abort_callback abort_callback, void * abort_data) {
|
||||
cgraph->abort_callback = abort_callback;
|
||||
cgraph->abort_callback_data = abort_data;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
|
||||
@ -21055,9 +21090,8 @@ static enum ggml_opt_result ggml_opt_adam(
|
||||
|
||||
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
|
||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
|
||||
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
|
||||
ggml_graph_prepare (gb, params.n_threads, NULL);
|
||||
ggml_graph_work_init(gb, ctx);
|
||||
|
||||
bool cancel = false;
|
||||
|
||||
@ -21073,7 +21107,7 @@ static enum ggml_opt_result ggml_opt_adam(
|
||||
}
|
||||
// ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(gb, &cplan);
|
||||
ggml_graph_compute(gb);
|
||||
ggml_opt_acc_grad(np, ps, g, accum_norm);
|
||||
fx += ggml_get_f32_1d(f, 0);
|
||||
}
|
||||
@ -21164,7 +21198,7 @@ static enum ggml_opt_result ggml_opt_adam(
|
||||
}
|
||||
// ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(gb, &cplan);
|
||||
ggml_graph_compute(gb);
|
||||
ggml_opt_acc_grad(np, ps, g, accum_norm);
|
||||
fx += ggml_get_f32_1d(f, 0);
|
||||
}
|
||||
@ -21249,7 +21283,6 @@ static enum ggml_opt_result linesearch_backtracking(
|
||||
const float * xp,
|
||||
struct ggml_tensor * f,
|
||||
struct ggml_cgraph * gb,
|
||||
struct ggml_cplan * cplan,
|
||||
const int np,
|
||||
struct ggml_tensor * ps[],
|
||||
bool * cancel,
|
||||
@ -21306,7 +21339,7 @@ static enum ggml_opt_result linesearch_backtracking(
|
||||
}
|
||||
// ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(gb, cplan);
|
||||
ggml_graph_compute(gb);
|
||||
ggml_opt_acc_grad(np, ps, g, accum_norm);
|
||||
*fx += ggml_get_f32_1d(f, 0);
|
||||
}
|
||||
@ -21402,9 +21435,8 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
||||
opt->iter = iter;
|
||||
}
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
|
||||
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
|
||||
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
|
||||
ggml_graph_prepare (gb, params.n_threads, NULL);
|
||||
ggml_graph_work_init(gb, ctx);
|
||||
|
||||
float * x = opt->lbfgs.x->data; // current parameters
|
||||
float * xp = opt->lbfgs.xp->data; // previous parameters
|
||||
@ -21449,7 +21481,7 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
||||
}
|
||||
// ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
ggml_graph_compute(gb, &cplan);
|
||||
ggml_graph_compute(gb);
|
||||
ggml_opt_acc_grad(np, ps, g, accum_norm);
|
||||
fx += ggml_get_f32_1d(f, 0);
|
||||
}
|
||||
@ -21515,7 +21547,7 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
||||
// to determine if the optimization should be cancelled
|
||||
// this is a simple change, but not doing this atm, since I don't have a nice
|
||||
// way to test and don't want to break something with so many changes lined up
|
||||
ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
|
||||
ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, np, ps, &cancel, callback, callback_data);
|
||||
if (cancel) {
|
||||
return GGML_OPT_RESULT_CANCEL;
|
||||
}
|
||||
|
@ -242,12 +242,16 @@ static bool check_gradient(
|
||||
ggml_graph_cpy(gf, gb);
|
||||
ggml_build_backward_expand(ctx0, gf, gb, false);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
ggml_graph_prepare(gf, n_threads, nullptr);
|
||||
ggml_graph_work_init(gf, ctx0);
|
||||
ggml_graph_compute(gf);
|
||||
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||
ggml_graph_prepare(gb, n_threads, nullptr);
|
||||
ggml_graph_work_init(gb, ctx0);
|
||||
ggml_graph_compute(gb);
|
||||
|
||||
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
|
||||
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot");
|
||||
@ -262,13 +266,17 @@ static bool check_gradient(
|
||||
const float xp = x0 + eps;
|
||||
ggml_set_f32_1d(x[i], k, xp);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
ggml_graph_prepare(gf, n_threads, nullptr);
|
||||
ggml_graph_work_init(gf, ctx0);
|
||||
ggml_graph_compute(gf);
|
||||
|
||||
const double f0 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
ggml_set_f32_1d(x[i], k, xm);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
ggml_graph_prepare(gf, n_threads, nullptr);
|
||||
ggml_graph_work_init(gf, ctx0);
|
||||
ggml_graph_compute(gf);
|
||||
|
||||
const double f1 = ggml_get_f32_1d(f, 0);
|
||||
const double g0 = (f0 - f1)/(2.0*(double) eps);
|
||||
@ -301,7 +309,9 @@ static bool check_gradient(
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||
ggml_graph_prepare(gb, n_threads, nullptr);
|
||||
ggml_graph_work_init(gb, ctx0);
|
||||
ggml_graph_compute(gb);
|
||||
|
||||
const double g1 = ggml_get_f32_1d(x[i]->grad, k);
|
||||
|
||||
|
@ -113,7 +113,10 @@ int main(void) {
|
||||
ggml_build_forward_expand(ge, e);
|
||||
ggml_graph_reset(ge);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
||||
ggml_graph_prepare(ge, 1, nullptr);
|
||||
ggml_graph_work_init(ge, nullptr);
|
||||
ggml_graph_compute(ge);
|
||||
ggml_graph_work_free(ge);
|
||||
|
||||
const float fe = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: e = %.4f\n", __func__, fe);
|
||||
@ -124,7 +127,10 @@ int main(void) {
|
||||
|
||||
ggml_graph_reset(ge);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
||||
ggml_graph_prepare(ge, 1, nullptr);
|
||||
ggml_graph_work_init(ge, nullptr);
|
||||
ggml_graph_compute(ge);
|
||||
ggml_graph_work_free(ge);
|
||||
|
||||
const float fe_opt = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: original e = %.4f\n", __func__, fe);
|
||||
|
@ -112,17 +112,6 @@ static struct ggml_tensor * get_random_tensor_f32(
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
int main(int /*argc*/, const char ** /*argv*/) {
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ 128*1024*1024,
|
||||
@ -130,8 +119,6 @@ int main(int /*argc*/, const char ** /*argv*/) {
|
||||
/* .no_alloc = */ false,
|
||||
};
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * x;
|
||||
@ -175,7 +162,10 @@ int main(int /*argc*/, const char ** /*argv*/) {
|
||||
ggml_build_forward_expand(gf, r1);
|
||||
ggml_build_forward_expand(gf, r2);
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, gf, 4);
|
||||
ggml_graph_prepare(gf, 4, nullptr);
|
||||
ggml_graph_work_init(gf, nullptr);
|
||||
ggml_graph_compute(gf);
|
||||
ggml_graph_work_free(gf);
|
||||
|
||||
// check that r1 and r2 are the same
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user