mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
GGUF : write tensor (#2426)
* WIP: Write tensor * GGUF : Support writing tensors in Python * refactor : rm unused import and upd todos * fix : fix errors upd writing example * rm example.gguf * gitignore *.gguf * undo formatting
This commit is contained in:
parent
d2bb3ac10b
commit
11ef380c2a
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,6 +1,7 @@
|
|||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
*.so
|
*.so
|
||||||
|
*.gguf
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.build/
|
.build/
|
||||||
.cache/
|
.cache/
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
GGUF_MAGIC = 0x47475546
|
GGUF_MAGIC = 0x47475546
|
||||||
GGUF_VERSION = 1
|
GGUF_VERSION = 1
|
||||||
|
GGUF_DEFAULT_ALIGNMENT = 32
|
||||||
|
|
||||||
# general
|
# general
|
||||||
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
KEY_GENERAL_ARCHITECTURE = "general.architecture"
|
||||||
|
101
gguf.py
101
gguf.py
@ -1,14 +1,16 @@
|
|||||||
"""TODOs
|
"""TODOs
|
||||||
1. Implement writing tensor data with alignment.
|
1. Implement writers for known architectures, LLaMA in particular.
|
||||||
2. Implement writers for known architectures, LLaMA in particular.
|
2. Add docstrings from the format specs.
|
||||||
3. Add docstrings from the format specs.
|
3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
||||||
4. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import struct
|
import struct
|
||||||
import constants
|
import constants
|
||||||
from enum import IntEnum
|
from enum import IntEnum
|
||||||
from typing import List, Any
|
from typing import Any, IO, List
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class GGMLQuantizationType(IntEnum):
|
class GGMLQuantizationType(IntEnum):
|
||||||
F32 = 0
|
F32 = 0
|
||||||
@ -54,15 +56,18 @@ class GGUFValueType(IntEnum):
|
|||||||
else:
|
else:
|
||||||
return GGUFValueType.INT32
|
return GGUFValueType.INT32
|
||||||
|
|
||||||
|
|
||||||
class GGUFWriter:
|
class GGUFWriter:
|
||||||
def __init__(self, buffered_writer):
|
def __init__(self, fout: IO):
|
||||||
self.buffered_writer = buffered_writer
|
self.fout = fout
|
||||||
|
self.offset_tensor = 0
|
||||||
|
self.tensors: List[np.ndarray] = []
|
||||||
|
|
||||||
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
||||||
self.buffered_writer.write(struct.pack("<I", constants.GGUF_MAGIC))
|
self.fout.write(struct.pack("<I", constants.GGUF_MAGIC))
|
||||||
self.buffered_writer.write(struct.pack("<I", constants.GGUF_VERSION))
|
self.fout.write(struct.pack("<I", constants.GGUF_VERSION))
|
||||||
self.buffered_writer.write(struct.pack("<I", tensor_count))
|
self.fout.write(struct.pack("<I", tensor_count))
|
||||||
self.buffered_writer.write(struct.pack("<I", metadata_kv_count))
|
self.fout.write(struct.pack("<I", metadata_kv_count))
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def open(cls, path: str) -> "GGUFWriter":
|
def open(cls, path: str) -> "GGUFWriter":
|
||||||
@ -119,40 +124,69 @@ class GGUFWriter:
|
|||||||
if vtype is None:
|
if vtype is None:
|
||||||
vtype = GGUFValueType.get_type(val)
|
vtype = GGUFValueType.get_type(val)
|
||||||
|
|
||||||
self.buffered_writer.write(struct.pack("<I", vtype))
|
self.fout.write(struct.pack("<I", vtype))
|
||||||
|
|
||||||
if vtype == GGUFValueType.UINT8:
|
if vtype == GGUFValueType.UINT8:
|
||||||
self.buffered_writer.write(struct.pack("<B", val))
|
self.fout.write(struct.pack("<B", val))
|
||||||
elif vtype == GGUFValueType.INT8:
|
elif vtype == GGUFValueType.INT8:
|
||||||
self.buffered_writer.write(struct.pack("<b", val))
|
self.fout.write(struct.pack("<b", val))
|
||||||
elif vtype == GGUFValueType.UINT16:
|
elif vtype == GGUFValueType.UINT16:
|
||||||
self.buffered_writer.write(struct.pack("<H", val))
|
self.fout.write(struct.pack("<H", val))
|
||||||
elif vtype == GGUFValueType.INT16:
|
elif vtype == GGUFValueType.INT16:
|
||||||
self.buffered_writer.write(struct.pack("<h", val))
|
self.fout.write(struct.pack("<h", val))
|
||||||
elif vtype == GGUFValueType.UINT32:
|
elif vtype == GGUFValueType.UINT32:
|
||||||
self.buffered_writer.write(struct.pack("<I", val))
|
self.fout.write(struct.pack("<I", val))
|
||||||
elif vtype == GGUFValueType.INT32:
|
elif vtype == GGUFValueType.INT32:
|
||||||
self.buffered_writer.write(struct.pack("<i", val))
|
self.fout.write(struct.pack("<i", val))
|
||||||
elif vtype == GGUFValueType.FLOAT32:
|
elif vtype == GGUFValueType.FLOAT32:
|
||||||
self.buffered_writer.write(struct.pack("<f", val))
|
self.fout.write(struct.pack("<f", val))
|
||||||
elif vtype == GGUFValueType.BOOL:
|
elif vtype == GGUFValueType.BOOL:
|
||||||
self.buffered_writer.write(struct.pack("?", val))
|
self.fout.write(struct.pack("?", val))
|
||||||
elif vtype == GGUFValueType.STRING:
|
elif vtype == GGUFValueType.STRING:
|
||||||
encoded_val = val.encode("utf8")
|
encoded_val = val.encode("utf8")
|
||||||
self.buffered_writer.write(struct.pack("<I", len(encoded_val)))
|
self.fout.write(struct.pack("<I", len(encoded_val)))
|
||||||
self.buffered_writer.write(encoded_val)
|
self.fout.write(encoded_val)
|
||||||
elif vtype == GGUFValueType.ARRAY:
|
elif vtype == GGUFValueType.ARRAY:
|
||||||
self.buffered_writer.write(struct.pack("<I", len(val)))
|
self.fout.write(struct.pack("<I", len(val)))
|
||||||
for item in val:
|
for item in val:
|
||||||
self.write_val(item)
|
self.write_val(item)
|
||||||
else:
|
else:
|
||||||
raise ValueError("Invalid GGUF metadata value type")
|
raise ValueError("Invalid GGUF metadata value type")
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def ggml_pad(x: int, n: int) -> int:
|
||||||
|
return ((x + n - 1) // n) * n
|
||||||
|
|
||||||
|
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
||||||
|
self.write_val(name, GGUFValueType.STRING)
|
||||||
|
n_dims = len(tensor.shape)
|
||||||
|
self.write_val(n_dims, GGUFValueType.INT32)
|
||||||
|
for i in range(n_dims):
|
||||||
|
self.write_val(tensor.shape[n_dims - 1 - i], GGUFValueType.INT32)
|
||||||
|
|
||||||
|
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||||
|
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
||||||
|
self.write_val(dtype, GGUFValueType.INT32)
|
||||||
|
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
||||||
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
||||||
|
|
||||||
|
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
||||||
|
pad = offset_data - self.fout.tell()
|
||||||
|
self.fout.write(bytes([0] * pad))
|
||||||
|
|
||||||
|
self.tensors.append(tensor)
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
for tensor in self.tensors:
|
||||||
|
tensor.tofile(self.fout)
|
||||||
|
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
||||||
|
self.fout.write(bytes([0] * pad))
|
||||||
|
|
||||||
def flush(self):
|
def flush(self):
|
||||||
self.buffered_writer.flush()
|
self.fout.flush()
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
self.buffered_writer.close()
|
self.fout.close()
|
||||||
|
|
||||||
def write_architecture(self, architecture: str):
|
def write_architecture(self, architecture: str):
|
||||||
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||||||
@ -235,14 +269,15 @@ class GGUFWriter:
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Example usage with a file
|
# Example usage with a file
|
||||||
gguf_writer = GGUFWriter.open("example.gguf")
|
gguf_writer = GGUFWriter.open("example.gguf")
|
||||||
gguf_writer.write_header(0, 3)
|
gguf_writer.write_header(2, 3)
|
||||||
|
|
||||||
gguf_writer.write_architecture("llama")
|
gguf_writer.write_architecture("llama")
|
||||||
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||||||
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||||
# Write an array of integers
|
tensor1 = np.random.random(size=(7, 10)).astype(np.float32)
|
||||||
#gguf_writer.write_array("simple_array", [1, 2, 3, 4])
|
tensor2 = np.random.random(size=(16, 12)).astype(np.float16)
|
||||||
# Write a nested array
|
gguf_writer.write_tensor_info("tensor1", tensor1)
|
||||||
#gguf_writer.write_array("nested", [1, "nested", [2, 3]])
|
gguf_writer.write_tensor_info("tensor2", tensor2)
|
||||||
|
gguf_writer.write_tensors()
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
Loading…
Reference in New Issue
Block a user