mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
CUDA: Implemented row flattening for non-glm RoPE (#2468)
This commit is contained in:
parent
2dbf518911
commit
1215ed7d5c
23
ggml-cuda.cu
23
ggml-cuda.cu
@ -3150,7 +3150,8 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|||||||
}
|
}
|
||||||
|
|
||||||
// rope == RoPE == rotary positional embedding
|
// rope == RoPE == rotary positional embedding
|
||||||
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
|
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
|
||||||
|
const float p_delta, const int p_delta_rows, const float theta_scale) {
|
||||||
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
|
||||||
|
|
||||||
if (col >= ncols) {
|
if (col >= ncols) {
|
||||||
@ -3160,7 +3161,7 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
|
|||||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||||
const int i = row*ncols + col;
|
const int i = row*ncols + col;
|
||||||
|
|
||||||
const float theta = p*powf(theta_scale, col/2);
|
const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
|
|
||||||
@ -3764,12 +3765,13 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
|
|||||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
|
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
|
||||||
|
const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||||
GGML_ASSERT(nrows % 2 == 0);
|
GGML_ASSERT(nrows % 2 == 0);
|
||||||
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
||||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||||
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
|
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
|
||||||
@ -4465,6 +4467,7 @@ inline void ggml_cuda_op_rope(
|
|||||||
GGML_ASSERT(dst_ddf_i != nullptr);
|
GGML_ASSERT(dst_ddf_i != nullptr);
|
||||||
|
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t i01_diff = i01_high - i01_low;
|
const int64_t i01_diff = i01_high - i01_low;
|
||||||
|
|
||||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
@ -4478,17 +4481,18 @@ inline void ggml_cuda_op_rope(
|
|||||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
|
|
||||||
|
|
||||||
bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
if (is_glm) {
|
if (is_glm) {
|
||||||
|
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
|
||||||
const float id_p = min(p, n_ctx - 2.f);
|
const float id_p = min(p, n_ctx - 2.f);
|
||||||
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
||||||
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
||||||
} else {
|
} else {
|
||||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
|
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
||||||
|
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
||||||
}
|
}
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
@ -5103,7 +5107,10 @@ void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml
|
|||||||
|
|
||||||
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
||||||
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
|
|
||||||
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
|
const bool is_glm = mode & 4;
|
||||||
|
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
Loading…
Reference in New Issue
Block a user