From 122ed4840cc6d209df6043e027f9f8a03aee01da Mon Sep 17 00:00:00 2001 From: Maximilian Winter Date: Tue, 16 Jan 2024 13:10:48 +0100 Subject: [PATCH] examples : fix and improv docs for the grammar generator (#4909) * Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue. * Fixed some issues and bugs of the grammar generator. Imporved Documentation * Update pydantic_models_to_grammar.py --- examples/pydantic_models_to_grammar.py | 877 +++++++++++++++---------- 1 file changed, 519 insertions(+), 358 deletions(-) diff --git a/examples/pydantic_models_to_grammar.py b/examples/pydantic_models_to_grammar.py index 41b98fdc1..848c1c367 100644 --- a/examples/pydantic_models_to_grammar.py +++ b/examples/pydantic_models_to_grammar.py @@ -4,6 +4,7 @@ from copy import copy from inspect import isclass, getdoc from types import NoneType +from docstring_parser import parse from pydantic import BaseModel, create_model, Field from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias from enum import Enum @@ -25,9 +26,10 @@ class PydanticDataType(Enum): ENUM (str): Represents an enum data type. CUSTOM_CLASS (str): Represents a custom class data type. """ + STRING = "string" TRIPLE_QUOTED_STRING = "triple_quoted_string" - MARKDOWN_STRING = "markdown_string" + MARKDOWN_CODE_BLOCK = "markdown_code_block" BOOLEAN = "boolean" INTEGER = "integer" FLOAT = "float" @@ -78,10 +80,10 @@ def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str: def format_model_and_field_name(model_name: str) -> str: - parts = re.findall('[A-Z][^A-Z]*', model_name) + parts = re.findall("[A-Z][^A-Z]*", model_name) if not parts: # Check if the list is empty return model_name.lower().replace("_", "-") - return '-'.join(part.lower().replace("_", "-") for part in parts) + return "-".join(part.lower().replace("_", "-") for part in parts) def generate_list_rule(element_type): @@ -93,29 +95,31 @@ def generate_list_rule(element_type): """ rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list" element_rule = map_pydantic_type_to_gbnf(element_type) - list_rule = fr'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"' + list_rule = rf'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"' return list_rule def get_members_structure(cls, rule_name): if issubclass(cls, Enum): # Handle Enum types - members = [f'\"\\\"{member.value}\\\"\"' for name, member in cls.__members__.items()] + members = [f'"\\"{member.value}\\""' for name, member in cls.__members__.items()] return f"{cls.__name__.lower()} ::= " + " | ".join(members) if cls.__annotations__ and cls.__annotations__ != {}: result = f'{rule_name} ::= "{{"' type_list_rules = [] # Modify this comprehension - members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param_type)}' - for name, param_type in cls.__annotations__.items() - if name != 'self'] + members = [ + f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}' + for name, param_type in cls.__annotations__.items() + if name != "self" + ] result += '"," '.join(members) result += ' "}"' return result, type_list_rules elif rule_name == "custom-class-any": - result = f'{rule_name} ::= ' - result += 'value' + result = f"{rule_name} ::= " + result += "value" type_list_rules = [] return result, type_list_rules else: @@ -124,9 +128,11 @@ def get_members_structure(cls, rule_name): result = f'{rule_name} ::= "{{"' type_list_rules = [] # Modify this comprehension too - members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param.annotation)}' - for name, param in parameters.items() - if name != 'self' and param.annotation != inspect.Parameter.empty] + members = [ + f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param.annotation)}' + for name, param in parameters.items() + if name != "self" and param.annotation != inspect.Parameter.empty + ] result += '", "'.join(members) result += ' "}"' @@ -141,8 +147,8 @@ def regex_to_gbnf(regex_pattern: str) -> str: gbnf_rule = regex_pattern # Translate common regex components to GBNF - gbnf_rule = gbnf_rule.replace('\\d', '[0-9]') - gbnf_rule = gbnf_rule.replace('\\s', '[ \t\n]') + gbnf_rule = gbnf_rule.replace("\\d", "[0-9]") + gbnf_rule = gbnf_rule.replace("\\s", "[ \t\n]") # Handle quantifiers and other regex syntax that is similar in GBNF # (e.g., '*', '+', '?', character classes) @@ -158,12 +164,12 @@ def generate_gbnf_integer_rules(max_digit=None, min_digit=None): Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits. Parameters: - max_digit (int): The maximum number of digits for the integer. Default is None. - min_digit (int): The minimum number of digits for the integer. Default is None. + max_digit (int): The maximum number of digits for the integer. Default is None. + min_digit (int): The minimum number of digits for the integer. Default is None. Returns: - integer_rule (str): The identifier for the integer rule generated. - additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits. + integer_rule (str): The identifier for the integer rule generated. + additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits. """ additional_rules = [] @@ -178,21 +184,21 @@ def generate_gbnf_integer_rules(max_digit=None, min_digit=None): # Handling Integer Rules if max_digit is not None or min_digit is not None: # Start with an empty rule part - integer_rule_part = '' + integer_rule_part = "" # Add mandatory digits as per min_digit if min_digit is not None: - integer_rule_part += '[0-9] ' * min_digit + integer_rule_part += "[0-9] " * min_digit # Add optional digits up to max_digit if max_digit is not None: optional_digits = max_digit - (min_digit if min_digit is not None else 0) - integer_rule_part += ''.join(['[0-9]? ' for _ in range(optional_digits)]) + integer_rule_part += "".join(["[0-9]? " for _ in range(optional_digits)]) # Trim the rule part and append it to additional rules integer_rule_part = integer_rule_part.strip() if integer_rule_part: - additional_rules.append(f'{integer_rule} ::= {integer_rule_part}') + additional_rules.append(f"{integer_rule} ::= {integer_rule_part}") return integer_rule, additional_rules @@ -224,21 +230,26 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None additional_rules = [] # Define the integer part rule - integer_part_rule = "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( + integer_part_rule = ( + "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( f"-min{min_digit}" if min_digit is not None else "") + ) # Define the fractional part rule based on precision constraints fractional_part_rule = "fractional-part" - fractional_rule_part = '' + fractional_rule_part = "" if max_precision is not None or min_precision is not None: fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + ( - f"-min{min_precision}" if min_precision is not None else "") + f"-min{min_precision}" if min_precision is not None else "" + ) # Minimum number of digits - fractional_rule_part = '[0-9]' * (min_precision if min_precision is not None else 1) + fractional_rule_part = "[0-9]" * (min_precision if min_precision is not None else 1) # Optional additional digits - fractional_rule_part += ''.join([' [0-9]?'] * ( - (max_precision - (min_precision if min_precision is not None else 1)) if max_precision is not None else 0)) - additional_rules.append(f'{fractional_part_rule} ::= {fractional_rule_part}') + fractional_rule_part += "".join( + [" [0-9]?"] * ((max_precision - ( + min_precision if min_precision is not None else 1)) if max_precision is not None else 0) + ) + additional_rules.append(f"{fractional_part_rule} ::= {fractional_rule_part}") # Define the float rule float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}" @@ -246,20 +257,19 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None # Generating the integer part rule definition, if necessary if max_digit is not None or min_digit is not None: - integer_rule_part = '[0-9]' + integer_rule_part = "[0-9]" if min_digit is not None and min_digit > 1: - integer_rule_part += ' [0-9]' * (min_digit - 1) + integer_rule_part += " [0-9]" * (min_digit - 1) if max_digit is not None: - integer_rule_part += ''.join([' [0-9]?'] * (max_digit - (min_digit if min_digit is not None else 1))) - additional_rules.append(f'{integer_part_rule} ::= {integer_rule_part.strip()}') + integer_rule_part += "".join([" [0-9]?"] * (max_digit - (min_digit if min_digit is not None else 1))) + additional_rules.append(f"{integer_part_rule} ::= {integer_rule_part.strip()}") return float_rule, additional_rules -def generate_gbnf_rule_for_type(model_name, field_name, - field_type, is_optional, processed_models, created_rules, - field_info=None) -> \ - Tuple[str, list]: +def generate_gbnf_rule_for_type( + model_name, field_name, field_type, is_optional, processed_models, created_rules, field_info=None +) -> Tuple[str, list]: """ Generate GBNF rule for a given field type. @@ -282,20 +292,19 @@ def generate_gbnf_rule_for_type(model_name, field_name, if isclass(field_type) and issubclass(field_type, BaseModel): nested_model_name = format_model_and_field_name(field_type.__name__) - nested_model_rules = generate_gbnf_grammar(field_type, processed_models, created_rules) + nested_model_rules, _ = generate_gbnf_grammar(field_type, processed_models, created_rules) rules.extend(nested_model_rules) gbnf_type, rules = nested_model_name, rules elif isclass(field_type) and issubclass(field_type, Enum): - enum_values = [f'\"\\\"{e.value}\\\"\"' for e in field_type] # Adding escaped quotes + enum_values = [f'"\\"{e.value}\\""' for e in field_type] # Adding escaped quotes enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}" rules.append(enum_rule) gbnf_type, rules = model_name + "-" + field_name, rules - elif get_origin(field_type) == list or field_type == list: # Array + elif get_origin(field_type) == list: # Array element_type = get_args(field_type)[0] - element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-element", - element_type, is_optional, processed_models, - created_rules) + element_rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules + ) rules.extend(additional_rules) array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """ rules.append(array_rule) @@ -303,10 +312,9 @@ def generate_gbnf_rule_for_type(model_name, field_name, elif get_origin(field_type) == set or field_type == set: # Array element_type = get_args(field_type)[0] - element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-element", - element_type, is_optional, processed_models, - created_rules) + element_rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules + ) rules.extend(additional_rules) array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """ rules.append(array_rule) @@ -318,15 +326,13 @@ def generate_gbnf_rule_for_type(model_name, field_name, elif gbnf_type.startswith("custom-dict-"): key_type, value_type = get_args(field_type) - additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-key-type", - key_type, is_optional, processed_models, - created_rules) - additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-value-type", - value_type, is_optional, - processed_models, created_rules) - gbnf_type = fr'{gbnf_type} ::= "{{" ( {additional_key_type} ":" {additional_value_type} ("," {additional_key_type} ":" {additional_value_type})* )? "}}" ' + additional_key_type, additional_key_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-key-type", key_type, is_optional, processed_models, created_rules + ) + additional_value_type, additional_value_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-value-type", value_type, is_optional, processed_models, created_rules + ) + gbnf_type = rf'{gbnf_type} ::= "{{" ( {additional_key_type} ": " {additional_value_type} ("," "\n" ws {additional_key_type} ":" {additional_value_type})* )? "}}" ' rules.extend(additional_key_rules) rules.extend(additional_value_rules) @@ -336,19 +342,16 @@ def generate_gbnf_rule_for_type(model_name, field_name, for union_type in union_types: if isinstance(union_type, _GenericAlias): - union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name, - field_name, union_type, - False, - processed_models, created_rules) + union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type( + model_name, field_name, union_type, False, processed_models, created_rules + ) union_rules.append(union_gbnf_type) rules.extend(union_rules_list) - elif not issubclass(union_type, NoneType): - union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name, - field_name, union_type, - False, - processed_models, created_rules) + union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type( + model_name, field_name, union_type, False, processed_models, created_rules + ) union_rules.append(union_gbnf_type) rules.extend(union_rules_list) @@ -363,45 +366,58 @@ def generate_gbnf_rule_for_type(model_name, field_name, else: gbnf_type = f"{model_name}-{field_name}-union" elif isclass(field_type) and issubclass(field_type, str): - if field_info and hasattr(field_info, 'json_schema_extra') and field_info.json_schema_extra is not None: - - triple_quoted_string = field_info.json_schema_extra.get('triple_quoted_string', False) - markdown_string = field_info.json_schema_extra.get('markdown_string', False) + if field_info and hasattr(field_info, "json_schema_extra") and field_info.json_schema_extra is not None: + triple_quoted_string = field_info.json_schema_extra.get("triple_quoted_string", False) + markdown_string = field_info.json_schema_extra.get("markdown_code_block", False) gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value - gbnf_type = PydanticDataType.MARKDOWN_STRING.value if markdown_string else gbnf_type + gbnf_type = PydanticDataType.MARKDOWN_CODE_BLOCK.value if markdown_string else gbnf_type - elif field_info and hasattr(field_info, 'pattern'): + elif field_info and hasattr(field_info, "pattern"): # Convert regex pattern to grammar rule regex_pattern = field_info.regex.pattern gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}" else: gbnf_type = PydanticDataType.STRING.value - elif isclass(field_type) and issubclass(field_type, float) and field_info and hasattr(field_info, - 'json_schema_extra') and field_info.json_schema_extra is not None: + elif ( + isclass(field_type) + and issubclass(field_type, float) + and field_info + and hasattr(field_info, "json_schema_extra") + and field_info.json_schema_extra is not None + ): # Retrieve precision attributes for floats - max_precision = field_info.json_schema_extra.get('max_precision') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_precision = field_info.json_schema_extra.get('min_precision') if field_info and hasattr(field_info, - 'json_schema_extra') else None - max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None + max_precision = ( + field_info.json_schema_extra.get("max_precision") if field_info and hasattr(field_info, + "json_schema_extra") else None + ) + min_precision = ( + field_info.json_schema_extra.get("min_precision") if field_info and hasattr(field_info, + "json_schema_extra") else None + ) + max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None + min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None # Generate GBNF rule for float with given attributes - gbnf_type, rules = generate_gbnf_float_rules(max_digit=max_digits, min_digit=min_digits, - max_precision=max_precision, - min_precision=min_precision) + gbnf_type, rules = generate_gbnf_float_rules( + max_digit=max_digits, min_digit=min_digits, max_precision=max_precision, min_precision=min_precision + ) - elif isclass(field_type) and issubclass(field_type, int) and field_info and hasattr(field_info, - 'json_schema_extra') and field_info.json_schema_extra is not None: + elif ( + isclass(field_type) + and issubclass(field_type, int) + and field_info + and hasattr(field_info, "json_schema_extra") + and field_info.json_schema_extra is not None + ): # Retrieve digit attributes for integers - max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None + max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None + min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None # Generate GBNF rule for integer with given attributes gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits) @@ -443,13 +459,13 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created if not issubclass(model, BaseModel): # For non-Pydantic classes, generate model_fields from __annotations__ or __init__ - if hasattr(model, '__annotations__') and model.__annotations__: + if hasattr(model, "__annotations__") and model.__annotations__: model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} else: init_signature = inspect.signature(model.__init__) parameters = init_signature.parameters - model_fields = {name: (param.annotation, param.default) for name, param in parameters.items() - if name != 'self'} + model_fields = {name: (param.annotation, param.default) for name, param in parameters.items() if + name != "self"} else: # For Pydantic models, use model_fields and check for ellipsis (required fields) model_fields = model.__annotations__ @@ -469,51 +485,55 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created field_type = field_info field_info = model.model_fields[field_name] is_optional = field_info.is_required is False and get_origin(field_type) is Optional - rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - format_model_and_field_name(field_name), - field_type, is_optional, - processed_models, created_rules, field_info) - look_for_markdown_code_block = True if rule_name == "markdown_string" else False + rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, format_model_and_field_name(field_name), field_type, is_optional, processed_models, + created_rules, field_info + ) + look_for_markdown_code_block = True if rule_name == "markdown_code_block" else False look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False if not look_for_markdown_code_block and not look_for_triple_quoted_string: if rule_name not in created_rules: created_rules[rule_name] = additional_rules - model_rule_parts.append(f' ws \"\\\"{field_name}\\\"\" ": " {rule_name}') # Adding escaped quotes + model_rule_parts.append(f' ws "\\"{field_name}\\"" ":" ws {rule_name}') # Adding escaped quotes nested_rules.extend(additional_rules) else: - has_triple_quoted_string = look_for_markdown_code_block - has_markdown_code_block = look_for_triple_quoted_string + has_triple_quoted_string = look_for_triple_quoted_string + has_markdown_code_block = look_for_markdown_code_block fields_joined = r' "," "\n" '.join(model_rule_parts) - model_rule = fr'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"' - - if look_for_markdown_code_block or look_for_triple_quoted_string: - model_rule += ' ws "}"' + model_rule = rf'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"' + has_special_string = False if has_triple_quoted_string: + model_rule += '"\\n" ws "}"' model_rule += '"\\n" triple-quoted-string' + has_special_string = True if has_markdown_code_block: + model_rule += '"\\n" ws "}"' model_rule += '"\\n" markdown-code-block' + has_special_string = True all_rules = [model_rule] + nested_rules - return all_rules, has_markdown_code_block, has_triple_quoted_string + return all_rules, has_special_string -def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], outer_object_name: str = None, - outer_object_content: str = None, list_of_outputs: bool = False) -> str: +def generate_gbnf_grammar_from_pydantic_models( + models: List[Type[BaseModel]], outer_object_name: str = None, outer_object_content: str = None, + list_of_outputs: bool = False +) -> str: """ Generate GBNF Grammar from Pydantic Models. This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated * grammar. - Parameters: - models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - list_of_outputs (str, optional): Allows a list of output objects + Args: + models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + list_of_outputs (str, optional): Allows a list of output objects Returns: - str: The generated GBNF grammar string. + str: The generated GBNF grammar string. Examples: models = [UserModel, PostModel] @@ -527,52 +547,53 @@ def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], ou all_rules = [] created_rules = {} if outer_object_name is None: - for model in models: - model_rules, _, _ = generate_gbnf_grammar(model, - processed_models, created_rules) + model_rules, _ = generate_gbnf_grammar(model, processed_models, created_rules) all_rules.extend(model_rules) if list_of_outputs: - root_rule = r'root ::= ws "[" grammar-models ("," grammar-models)* "]"' + "\n" + root_rule = r'root ::= (" "| "\n") "[" ws grammar-models ("," ws grammar-models)* ws "]"' + "\n" else: - root_rule = r'root ::= ws grammar-models' + "\n" + root_rule = r'root ::= (" "| "\n") grammar-models' + "\n" root_rule += "grammar-models ::= " + " | ".join( [format_model_and_field_name(model.__name__) for model in models]) all_rules.insert(0, root_rule) return "\n".join(all_rules) elif outer_object_name is not None: if list_of_outputs: - root_rule = fr'root ::= ws "[" {format_model_and_field_name(outer_object_name)} ("," {format_model_and_field_name(outer_object_name)})* "]"' + "\n" + root_rule = ( + rf'root ::= (" "| "\n") "[" ws {format_model_and_field_name(outer_object_name)} ("," ws {format_model_and_field_name(outer_object_name)})* ws "]"' + + "\n" + ) else: root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n" - model_rule = fr'{format_model_and_field_name(outer_object_name)} ::= ws "{{" ws "\"{outer_object_name}\"" ": " grammar-models' + model_rule = ( + rf'{format_model_and_field_name(outer_object_name)} ::= (" "| "\n") "{{" ws "\"{outer_object_name}\"" ":" ws grammar-models' + ) fields_joined = " | ".join( - [fr'{format_model_and_field_name(model.__name__)}-grammar-model' for model in models]) + [rf"{format_model_and_field_name(model.__name__)}-grammar-model" for model in models]) - grammar_model_rules = f'\ngrammar-models ::= {fields_joined}' + grammar_model_rules = f"\ngrammar-models ::= {fields_joined}" mod_rules = [] for model in models: - mod_rule = fr'{format_model_and_field_name(model.__name__)}-grammar-model ::= ws' - mod_rule += fr'"\"{format_model_and_field_name(model.__name__)}\"" "," ws "\"{outer_object_content}\"" ws ":" ws {format_model_and_field_name(model.__name__)}' + '\n' + mod_rule = rf"{format_model_and_field_name(model.__name__)}-grammar-model ::= " + mod_rule += ( + rf'"\"{model.__name__}\"" "," ws "\"{outer_object_content}\"" ":" ws {format_model_and_field_name(model.__name__)}' + "\n" + ) mod_rules.append(mod_rule) grammar_model_rules += "\n" + "\n".join(mod_rules) - look_for_markdown_code_block = False - look_for_triple_quoted_string = False + for model in models: - model_rules, markdown_block, triple_quoted_string = generate_gbnf_grammar(model, - processed_models, created_rules) + model_rules, has_special_string = generate_gbnf_grammar(model, processed_models, + created_rules) + + if not has_special_string: + model_rules[0] += r'"\n" ws "}"' + all_rules.extend(model_rules) - if markdown_block: - look_for_markdown_code_block = True - if triple_quoted_string: - look_for_triple_quoted_string = True - - if not look_for_markdown_code_block and not look_for_triple_quoted_string: - model_rule += ' ws "}"' all_rules.insert(0, root_rule + model_rule + grammar_model_rules) return "\n".join(all_rules) @@ -582,10 +603,10 @@ def get_primitive_grammar(grammar): Returns the needed GBNF primitive grammar for a given GBNF grammar string. Args: - grammar (str): The string containing the GBNF grammar. + grammar (str): The string containing the GBNF grammar. Returns: - str: GBNF primitive grammar string. + str: GBNF primitive grammar string. """ type_list = [] if "string-list" in grammar: @@ -611,7 +632,7 @@ integer ::= [0-9]+""" any_block = "" if "custom-class-any" in grammar: - any_block = ''' + any_block = """ value ::= object | array | string | number | boolean | null object ::= @@ -626,7 +647,7 @@ array ::= ("," ws value)* )? "]" ws -number ::= integer | float''' +number ::= integer | float""" markdown_code_block_grammar = "" if "markdown-code-block" in grammar: @@ -641,90 +662,32 @@ closing-triple-ticks ::= "```" "\n"''' triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes triple-quoted-string-content ::= ( [^'] | "'" [^'] | "'" "'" [^'] )* triple-quotes ::= "'''" """ - return "\n" + '\n'.join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar + return "\n" + "\n".join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar -def generate_field_markdown(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1) -> str: - indent = ' ' * depth - field_markdown = f"{indent}- **{field_name}** (`{field_type.__name__}`): " - - # Extracting field description from Pydantic Field using __model_fields__ - field_info = model.model_fields.get(field_name) - field_description = field_info.description if field_info and field_info.description else "No description available." - - field_markdown += field_description + '\n' - - # Handling nested BaseModel fields - if isclass(field_type) and issubclass(field_type, BaseModel): - field_markdown += f"{indent} - Details:\n" - for name, type_ in field_type.__annotations__.items(): - field_markdown += generate_field_markdown(name, type_, field_type, depth + 2) - - return field_markdown - - -def generate_markdown_report(pydantic_models: List[Type[BaseModel]]) -> str: - markdown = "" - for model in pydantic_models: - markdown += f"### {format_model_and_field_name(model.__name__)}\n" - - # Check if the model's docstring is different from BaseModel's docstring - class_doc = getdoc(model) - base_class_doc = getdoc(BaseModel) - class_description = class_doc if class_doc and class_doc != base_class_doc else "No specific description available." - - markdown += f"{class_description}\n\n" - markdown += "#### Fields\n" - - if isclass(model) and issubclass(model, BaseModel): - for name, field_type in model.__annotations__.items(): - markdown += generate_field_markdown(format_model_and_field_name(name), field_type, model) - markdown += "\n" - - return markdown - - -def format_json_example(example: dict, depth: int) -> str: +def generate_markdown_documentation( + pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields", + documentation_with_field_description=True +) -> str: """ - Format a JSON example into a readable string with indentation. + Generate markdown documentation for a list of Pydantic models. Args: - example (dict): JSON example to be formatted. - depth (int): Indentation depth. + pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. + model_prefix (str): Prefix for the model section. + fields_prefix (str): Prefix for the fields section. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - str: Formatted JSON example string. - """ - indent = ' ' * depth - formatted_example = '{\n' - for key, value in example.items(): - value_text = f"'{value}'" if isinstance(value, str) else value - formatted_example += f"{indent}{key}: {value_text},\n" - formatted_example = formatted_example.rstrip(',\n') + '\n' + indent + '}' - return formatted_example - - -def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_prefix="Model", - fields_prefix="Fields", documentation_with_field_description=True) -> str: - """ - Generate text documentation for a list of Pydantic models. - - Args: - pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. - model_prefix (str): Prefix for the model section. - fields_prefix (str): Prefix for the fields section. - documentation_with_field_description (bool): Include field descriptions in the documentation. - - Returns: - str: Generated text documentation. + str: Generated text documentation. """ documentation = "" pyd_models = [(model, True) for model in pydantic_models] for model, add_prefix in pyd_models: if add_prefix: - documentation += f"{model_prefix}: {format_model_and_field_name(model.__name__)}\n" + documentation += f"{model_prefix}: {model.__name__}\n" else: - documentation += f"Model: {format_model_and_field_name(model.__name__)}\n" + documentation += f"Model: {model.__name__}\n" # Handling multi-line model description with proper indentation @@ -733,7 +696,7 @@ def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_pr class_description = class_doc if class_doc and class_doc != base_class_doc else "" if class_description != "": documentation += " Description: " - documentation += "\n" + format_multiline_description(class_description, 2) + "\n" + documentation += format_multiline_description(class_description, 0) + "\n" if add_prefix: # Indenting the fields section @@ -753,35 +716,192 @@ def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_pr for element_type in element_types: if isclass(element_type) and issubclass(element_type, BaseModel): pyd_models.append((element_type, False)) - documentation += generate_field_text(name, field_type, model, - documentation_with_field_description=documentation_with_field_description) + documentation += generate_field_markdown( + name, field_type, model, documentation_with_field_description=documentation_with_field_description + ) documentation += "\n" - if hasattr(model, 'Config') and hasattr(model.Config, - 'json_schema_extra') and 'example' in model.Config.json_schema_extra: + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n" - json_example = json.dumps(model.Config.json_schema_extra['example']) + json_example = json.dumps(model.Config.json_schema_extra["example"]) documentation += format_multiline_description(json_example, 2) + "\n" return documentation -def generate_field_text(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, - documentation_with_field_description=True) -> str: +def generate_field_markdown( + field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, + documentation_with_field_description=True +) -> str: + """ + Generate markdown documentation for a Pydantic model field. + + Args: + field_name (str): Name of the field. + field_type (Type[Any]): Type of the field. + model (Type[BaseModel]): Pydantic model class. + depth (int): Indentation depth in the documentation. + documentation_with_field_description (bool): Include field descriptions in the documentation. + + Returns: + str: Generated text documentation for the field. + """ + indent = " " * depth + + field_info = model.model_fields.get(field_name) + field_description = field_info.description if field_info and field_info.description else "" + + if get_origin(field_type) == list: + element_type = get_args(field_type)[0] + field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + elif get_origin(field_type) == Union: + element_types = get_args(field_type) + types = [] + for element_type in element_types: + types.append(format_model_and_field_name(element_type.__name__)) + field_text = f"{indent}{field_name} ({' or '.join(types)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + else: + field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + + if not documentation_with_field_description: + return field_text + + if field_description != "": + field_text += f" Description: " + field_description + "\n" + + # Check for and include field-specific examples if available + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + field_example = model.Config.json_schema_extra["example"].get(field_name) + if field_example is not None: + example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example + field_text += f"{indent} Example: {example_text}\n" + + if isclass(field_type) and issubclass(field_type, BaseModel): + field_text += f"{indent} Details:\n" + for name, type_ in field_type.__annotations__.items(): + field_text += generate_field_markdown(name, type_, field_type, depth + 2) + + return field_text + + +def format_json_example(example: dict, depth: int) -> str: + """ + Format a JSON example into a readable string with indentation. + + Args: + example (dict): JSON example to be formatted. + depth (int): Indentation depth. + + Returns: + str: Formatted JSON example string. + """ + indent = " " * depth + formatted_example = "{\n" + for key, value in example.items(): + value_text = f"'{value}'" if isinstance(value, str) else value + formatted_example += f"{indent}{key}: {value_text},\n" + formatted_example = formatted_example.rstrip(",\n") + "\n" + indent + "}" + return formatted_example + + +def generate_text_documentation( + pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields", + documentation_with_field_description=True +) -> str: + """ + Generate text documentation for a list of Pydantic models. + + Args: + pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. + model_prefix (str): Prefix for the model section. + fields_prefix (str): Prefix for the fields section. + documentation_with_field_description (bool): Include field descriptions in the documentation. + + Returns: + str: Generated text documentation. + """ + documentation = "" + pyd_models = [(model, True) for model in pydantic_models] + for model, add_prefix in pyd_models: + if add_prefix: + documentation += f"{model_prefix}: {model.__name__}\n" + else: + documentation += f"Model: {model.__name__}\n" + + # Handling multi-line model description with proper indentation + + class_doc = getdoc(model) + base_class_doc = getdoc(BaseModel) + class_description = class_doc if class_doc and class_doc != base_class_doc else "" + if class_description != "": + documentation += " Description: " + documentation += "\n" + format_multiline_description(class_description, 2) + "\n" + + if isclass(model) and issubclass(model, BaseModel): + documentation_fields = "" + for name, field_type in model.__annotations__.items(): + # if name == "markdown_code_block": + # continue + if get_origin(field_type) == list: + element_type = get_args(field_type)[0] + if isclass(element_type) and issubclass(element_type, BaseModel): + pyd_models.append((element_type, False)) + if get_origin(field_type) == Union: + element_types = get_args(field_type) + for element_type in element_types: + if isclass(element_type) and issubclass(element_type, BaseModel): + pyd_models.append((element_type, False)) + documentation_fields += generate_field_text( + name, field_type, model, documentation_with_field_description=documentation_with_field_description + ) + if documentation_fields != "": + if add_prefix: + documentation += f" {fields_prefix}:\n{documentation_fields}" + else: + documentation += f" Fields:\n{documentation_fields}" + documentation += "\n" + + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n" + json_example = json.dumps(model.Config.json_schema_extra["example"]) + documentation += format_multiline_description(json_example, 2) + "\n" + + return documentation + + +def generate_field_text( + field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, + documentation_with_field_description=True +) -> str: """ Generate text documentation for a Pydantic model field. Args: - field_name (str): Name of the field. - field_type (Type[Any]): Type of the field. - model (Type[BaseModel]): Pydantic model class. - depth (int): Indentation depth in the documentation. - documentation_with_field_description (bool): Include field descriptions in the documentation. + field_name (str): Name of the field. + field_type (Type[Any]): Type of the field. + model (Type[BaseModel]): Pydantic model class. + depth (int): Indentation depth in the documentation. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - str: Generated text documentation for the field. + str: Generated text documentation for the field. """ - indent = ' ' * depth + indent = " " * depth field_info = model.model_fields.get(field_name) field_description = field_info.description if field_info and field_info.description else "" @@ -817,9 +937,9 @@ def generate_field_text(field_name: str, field_type: Type[Any], model: Type[Base field_text += f"{indent} Description: " + field_description + "\n" # Check for and include field-specific examples if available - if hasattr(model, 'Config') and hasattr(model.Config, - 'json_schema_extra') and 'example' in model.Config.json_schema_extra: - field_example = model.Config.json_schema_extra['example'].get(field_name) + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + field_example = model.Config.json_schema_extra["example"].get(field_name) if field_example is not None: example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example field_text += f"{indent} Example: {example_text}\n" @@ -837,39 +957,40 @@ def format_multiline_description(description: str, indent_level: int) -> str: Format a multiline description with proper indentation. Args: - description (str): Multiline description. - indent_level (int): Indentation level. + description (str): Multiline description. + indent_level (int): Indentation level. Returns: - str: Formatted multiline description. + str: Formatted multiline description. """ - indent = ' ' * indent_level - return indent + description.replace('\n', '\n' + indent) + indent = " " * indent_level + return indent + description.replace("\n", "\n" + indent) -def save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path="./grammar.gbnf", - documentation_file_path="./grammar_documentation.md"): +def save_gbnf_grammar_and_documentation( + grammar, documentation, grammar_file_path="./grammar.gbnf", documentation_file_path="./grammar_documentation.md" +): """ Save GBNF grammar and documentation to specified files. Args: - grammar (str): GBNF grammar string. - documentation (str): Documentation string. - grammar_file_path (str): File path to save the GBNF grammar. - documentation_file_path (str): File path to save the documentation. + grammar (str): GBNF grammar string. + documentation (str): Documentation string. + grammar_file_path (str): File path to save the GBNF grammar. + documentation_file_path (str): File path to save the documentation. Returns: - None + None """ try: - with open(grammar_file_path, 'w') as file: + with open(grammar_file_path, "w") as file: file.write(grammar + get_primitive_grammar(grammar)) print(f"Grammar successfully saved to {grammar_file_path}") except IOError as e: print(f"An error occurred while saving the grammar file: {e}") try: - with open(documentation_file_path, 'w') as file: + with open(documentation_file_path, "w") as file: file.write(documentation) print(f"Documentation successfully saved to {documentation_file_path}") except IOError as e: @@ -881,10 +1002,10 @@ def remove_empty_lines(string): Remove empty lines from a string. Args: - string (str): Input string. + string (str): Input string. Returns: - str: String with empty lines removed. + str: String with empty lines removed. """ lines = string.splitlines() non_empty_lines = [line for line in lines if line.strip() != ""] @@ -892,95 +1013,109 @@ def remove_empty_lines(string): return string_no_empty_lines -def generate_and_save_gbnf_grammar_and_documentation(pydantic_model_list, - grammar_file_path="./generated_grammar.gbnf", - documentation_file_path="./generated_grammar_documentation.md", - outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", - list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_and_save_gbnf_grammar_and_documentation( + pydantic_model_list, + grammar_file_path="./generated_grammar.gbnf", + documentation_file_path="./generated_grammar_documentation.md", + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation, and save them to specified files. Args: - pydantic_model_list: List of Pydantic model classes. - grammar_file_path (str): File path to save the generated GBNF grammar. - documentation_file_path (str): File path to save the generated documentation. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + pydantic_model_list: List of Pydantic model classes. + grammar_file_path (str): File path to save the generated GBNF grammar. + documentation_file_path (str): File path to save the generated documentation. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - None + None """ - documentation = generate_text_documentation(pydantic_model_list, model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + pydantic_model_list, model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar) save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path, documentation_file_path) -def generate_gbnf_grammar_and_documentation(pydantic_model_list, outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_gbnf_grammar_and_documentation( + pydantic_model_list, + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation for a list of Pydantic models. Args: - pydantic_model_list: List of Pydantic model classes. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + pydantic_model_list: List of Pydantic model classes. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - tuple: GBNF grammar string, documentation string. + tuple: GBNF grammar string, documentation string. """ - documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + copy(pydantic_model_list), model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar)) return grammar, documentation -def generate_gbnf_grammar_and_documentation_from_dictionaries(dictionaries: List[dict], - outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", - list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_gbnf_grammar_and_documentation_from_dictionaries( + dictionaries: List[dict], + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation from a list of dictionaries. Args: - dictionaries (List[dict]): List of dictionaries representing Pydantic models. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + dictionaries (List[dict]): List of dictionaries representing Pydantic models. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - tuple: GBNF grammar string, documentation string. + tuple: GBNF grammar string, documentation string. """ pydantic_model_list = create_dynamic_models_from_dictionaries(dictionaries) - documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + copy(pydantic_model_list), model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar)) return grammar, documentation @@ -990,41 +1125,61 @@ def create_dynamic_model_from_function(func: Callable): Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method. Args: - func (Callable): A function with type hints from which to create the model. + func (Callable): A function with type hints from which to create the model. Returns: - A dynamic Pydantic model class with the provided function as a 'run' method. + A dynamic Pydantic model class with the provided function as a 'run' method. """ - # Extracting type hints from the provided function - type_hints = get_type_hints(func) - type_hints.pop('return', None) - # Handling default values and annotations + # Get the signature of the function + sig = inspect.signature(func) + + # Parse the docstring + docstring = parse(func.__doc__) + dynamic_fields = {} - defaults = getattr(func, '__defaults__', ()) or () - defaults_index = len(type_hints) - len(defaults) + param_docs = [] + for param in sig.parameters.values(): + # Exclude 'self' parameter + if param.name == "self": + continue - for index, (name, typ) in enumerate(type_hints.items()): - if index >= defaults_index: - default_value = defaults[index - defaults_index] - dynamic_fields[name] = (typ, default_value) + # Assert that the parameter has a type annotation + if param.annotation == inspect.Parameter.empty: + raise TypeError(f"Parameter '{param.name}' in function '{func.__name__}' lacks a type annotation") + + # Find the parameter's description in the docstring + param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) + + # Assert that the parameter has a description + if not param_doc or not param_doc.description: + raise ValueError( + f"Parameter '{param.name}' in function '{func.__name__}' lacks a description in the docstring") + + # Add parameter details to the schema + param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) + param_docs.append((param.name, param_doc)) + if param.default == inspect.Parameter.empty: + default_value = ... else: - dynamic_fields[name] = (typ, ...) - + default_value = param.default + dynamic_fields[param.name] = ( + param.annotation if param.annotation != inspect.Parameter.empty else str, default_value) # Creating the dynamic model - dynamicModel = create_model(f'{func.__name__}', **dynamic_fields) + dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) - dynamicModel.__doc__ = getdoc(func) + for param_doc in param_docs: + dynamic_model.model_fields[param_doc[0]].description = param_doc[1].description + + dynamic_model.__doc__ = docstring.short_description - # Wrapping the original function to handle instance 'self' def run_method_wrapper(self): - func_args = {name: getattr(self, name) for name in type_hints} + func_args = {name: getattr(self, name) for name, _ in dynamic_fields.items()} return func(**func_args) # Adding the wrapped function as a 'run' method - setattr(dynamicModel, 'run', run_method_wrapper) - - return dynamicModel + setattr(dynamic_model, "run", run_method_wrapper) + return dynamic_model def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): @@ -1032,11 +1187,11 @@ def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): Add a 'run' method to a dynamic Pydantic model, using the provided function. Args: - - model (Type[BaseModel]): Dynamic Pydantic model class. - - func (Callable): Function to be added as a 'run' method to the model. + model (Type[BaseModel]): Dynamic Pydantic model class. + func (Callable): Function to be added as a 'run' method to the model. Returns: - - Type[BaseModel]: Pydantic model class with the added 'run' method. + Type[BaseModel]: Pydantic model class with the added 'run' method. """ def run_method_wrapper(self): @@ -1044,7 +1199,7 @@ def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): return func(**func_args) # Adding the wrapped function as a 'run' method - setattr(model, 'run', run_method_wrapper) + setattr(model, "run", run_method_wrapper) return model @@ -1054,15 +1209,15 @@ def create_dynamic_models_from_dictionaries(dictionaries: List[dict]): Create a list of dynamic Pydantic model classes from a list of dictionaries. Args: - - dictionaries (List[dict]): List of dictionaries representing model structures. + dictionaries (List[dict]): List of dictionaries representing model structures. Returns: - - List[Type[BaseModel]]: List of generated dynamic Pydantic model classes. + List[Type[BaseModel]]: List of generated dynamic Pydantic model classes. """ dynamic_models = [] for func in dictionaries: model_name = format_model_and_field_name(func.get("name", "")) - dyn_model = convert_dictionary_to_to_pydantic_model(func, model_name) + dyn_model = convert_dictionary_to_pydantic_model(func, model_name) dynamic_models.append(dyn_model) return dynamic_models @@ -1080,12 +1235,12 @@ from enum import Enum def json_schema_to_python_types(schema): type_map = { - 'any': Any, - 'string': str, - 'number': float, - 'integer': int, - 'boolean': bool, - 'array': list, + "any": Any, + "string": str, + "number": float, + "integer": int, + "boolean": bool, + "array": list, } return type_map[schema] @@ -1094,58 +1249,64 @@ def list_to_enum(enum_name, values): return Enum(enum_name, {value: value for value in values}) -def convert_dictionary_to_to_pydantic_model(dictionary: dict, model_name: str = 'CustomModel') -> Type[BaseModel]: +def convert_dictionary_to_pydantic_model(dictionary: dict, model_name: str = "CustomModel") -> Type[BaseModel]: """ Convert a dictionary to a Pydantic model class. Args: - - dictionary (dict): Dictionary representing the model structure. - - model_name (str): Name of the generated Pydantic model. + dictionary (dict): Dictionary representing the model structure. + model_name (str): Name of the generated Pydantic model. Returns: - - Type[BaseModel]: Generated Pydantic model class. + Type[BaseModel]: Generated Pydantic model class. """ fields = {} if "properties" in dictionary: for field_name, field_data in dictionary.get("properties", {}).items(): - if field_data == 'object': - submodel = convert_dictionary_to_to_pydantic_model(dictionary, f'{model_name}_{field_name}') + if field_data == "object": + submodel = convert_dictionary_to_pydantic_model(dictionary, f"{model_name}_{field_name}") fields[field_name] = (submodel, ...) else: - field_type = field_data.get('type', 'str') + field_type = field_data.get("type", "str") if field_data.get("enum", []): fields[field_name] = (list_to_enum(field_name, field_data.get("enum", [])), ...) - if field_type == "array": + elif field_type == "array": items = field_data.get("items", {}) if items != {}: array = {"properties": items} - array_type = convert_dictionary_to_to_pydantic_model(array, f'{model_name}_{field_name}_items') + array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items") fields[field_name] = (List[array_type], ...) else: fields[field_name] = (list, ...) - elif field_type == 'object': - submodel = convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}_{field_name}') + elif field_type == "object": + submodel = convert_dictionary_to_pydantic_model(field_data, f"{model_name}_{field_name}") fields[field_name] = (submodel, ...) + elif field_type == "required": + required = field_data.get("enum", []) + for key, field in fields.items(): + if key not in required: + fields[key] = (Optional[fields[key][0]], ...) else: field_type = json_schema_to_python_types(field_type) fields[field_name] = (field_type, ...) if "function" in dictionary: - for field_name, field_data in dictionary.get("function", {}).items(): if field_name == "name": model_name = field_data elif field_name == "description": fields["__doc__"] = field_data elif field_name == "parameters": - return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}') + return convert_dictionary_to_pydantic_model(field_data, f"{model_name}") + if "parameters" in dictionary: field_data = {"function": dictionary} - return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}') - + return convert_dictionary_to_pydantic_model(field_data, f"{model_name}") + if "required" in dictionary: + required = dictionary.get("required", []) + for key, field in fields.items(): + if key not in required: + fields[key] = (Optional[fields[key][0]], ...) custom_model = create_model(model_name, **fields) return custom_model - - -