mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
CUDA: deduplicate FlashAttention code (#7352)
This commit is contained in:
parent
cb42c29427
commit
133d99c599
@ -477,6 +477,17 @@ static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||
|
||||
static __device__ __forceinline__ float get_alibi_slope(
|
||||
const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
|
||||
) {
|
||||
if (max_bias <= 0.0f) {
|
||||
return 1.0f;
|
||||
}
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
return powf(base, exph);
|
||||
}
|
||||
|
||||
//////////////////////
|
||||
|
||||
|
@ -1,7 +1,44 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#define FATTN_KQ_STRIDE 256
|
||||
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
||||
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
||||
|
||||
typedef void (* fattn_kernel_t)(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3);
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
@ -45,3 +82,81 @@ static __global__ void flash_attn_combine_results(
|
||||
|
||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||
}
|
||||
|
||||
template <int D, int parallel_blocks>
|
||||
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t main_stream = ctx.stream();
|
||||
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if ((parallel_blocks) == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
@ -54,17 +54,8 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
@ -272,124 +263,50 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
}
|
||||
|
@ -53,17 +53,7 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
@ -270,124 +260,50 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
}
|
||||
|
@ -53,17 +53,8 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
@ -232,196 +223,104 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
if (parallel_blocks != 1 && tid < ncols) {
|
||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 256: {
|
||||
constexpr int D = 256;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
}
|
||||
|
@ -52,17 +52,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
@ -221,161 +211,65 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
if (parallel_blocks != 1 && tid < ncols) {
|
||||
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
}
|
||||
|
@ -85,19 +85,9 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
half2 slope2 = make_half2(1.0f, 1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
slope2 = make_half2(slopeh, slopeh);
|
||||
}
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
@ -439,108 +429,37 @@ static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
|
||||
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if ((parallel_blocks) == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
return;
|
||||
}
|
||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
|
||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||
@ -582,22 +501,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -608,22 +527,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
||||
break;
|
||||
// case 256:
|
||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
||||
// break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -643,16 +562,16 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -666,22 +585,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -694,22 +613,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
constexpr int nwarps = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include "common.cuh"
|
||||
#include "softmax.cuh"
|
||||
|
||||
template <typename T>
|
||||
@ -23,17 +24,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = rowx/nrows_y; // head index
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
|
||||
|
||||
extern __shared__ float data_soft_max_f32[];
|
||||
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||
|
Loading…
Reference in New Issue
Block a user