diff --git a/ggml-alloc.c b/ggml-alloc.c index 89b85d348..60141a34d 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -109,8 +109,8 @@ void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) { if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; } else { - fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", - __func__, size, max_avail); + fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, largest block available %zu)\n", + __func__, tensor->name, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); return; } diff --git a/llama.cpp b/llama.cpp index 582e82260..114046db9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1669,6 +1669,9 @@ struct llama_context { for (ggml_backend_t backend : backends) { ggml_backend_free(backend); } + + ggml_backend_buffer_free(buf_input); + ggml_free(ctx_input); } llama_cparams cparams; @@ -1715,8 +1718,14 @@ struct llama_context { // allocator for the input tensors ggml_tallocr * alloc = nullptr; - // temporary buffer for copying data to/from the backend - std::vector> buf_copy; + // input tensors + ggml_backend_buffer_t buf_input = nullptr; + ggml_context * ctx_input = nullptr; + struct ggml_tensor * inp_tokens; // I32 [n_batch] + struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] + struct ggml_tensor * inp_pos; // I32 [n_batch] + struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch] + struct ggml_tensor * inp_K_shift; // I32 [n_ctx] #ifdef GGML_USE_MPI ggml_mpi_context * ctx_mpi = NULL; @@ -4089,22 +4098,24 @@ static struct ggml_tensor * llm_build_inp_embd( const llama_hparams & hparams, const llama_batch & batch, struct ggml_tensor * tok_embd, + struct ggml_tensor * inp_tokens, + struct ggml_tensor * inp_embd, const llm_build_cb & cb) { const int64_t n_embd = hparams.n_embd; struct ggml_tensor * inpL; if (batch.token) { - struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens); + struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0); cb(inp_tokens, "inp_tokens", -1); - inpL = ggml_get_rows(ctx, tok_embd, inp_tokens); + inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif - inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); + inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0); } return inpL; @@ -4118,6 +4129,7 @@ static void llm_build_k_shift( const llama_cparams & cparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, + struct ggml_tensor * K_shift, llm_rope_type type, int64_t n_ctx, float freq_base, @@ -4134,9 +4146,6 @@ static void llm_build_k_shift( const float beta_fast = cparams.yarn_beta_fast; const float beta_slow = cparams.yarn_beta_slow; - struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx); - cb(K_shift, "K_shift", -1); - int rope_type = 0; switch (type) { @@ -4457,6 +4466,7 @@ static struct ggml_tensor * llm_build_kv( struct llm_build_context { const llama_model & model; + const llama_context & lctx; const llama_hparams & hparams; const llama_cparams & cparams; const llama_batch & batch; @@ -4503,6 +4513,7 @@ struct llm_build_context { const llm_build_cb & cb, bool worst_case) : model (lctx.model), + lctx (lctx), hparams (model.hparams), cparams (lctx.cparams), batch (batch), @@ -4563,20 +4574,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -4747,20 +4758,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -4868,20 +4879,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -4990,15 +5001,15 @@ struct llm_build_context { struct ggml_tensor * pos; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); @@ -5087,19 +5098,19 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -5294,11 +5305,11 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); for (int il = 0; il < n_layer; ++il) { @@ -5384,11 +5395,11 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); inpL = llm_build_norm(ctx0, inpL, hparams, @@ -5477,11 +5488,11 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); for (int il = 0; il < n_layer; ++il) { @@ -5573,20 +5584,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -5696,20 +5707,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -5810,20 +5821,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -5931,20 +5942,20 @@ struct llm_build_context { struct ggml_tensor * ffn_output; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -6053,20 +6064,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -6160,15 +6171,15 @@ struct llm_build_context { struct ggml_tensor * pos; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); @@ -6258,20 +6269,20 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); cb(inp_pos, "inp_pos", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); cb(KQ_mask, "KQ_mask", -1); // shift the entire K-cache if needed if (do_rope_shift) { - llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); } for (int il = 0; il < n_layer; ++il) { @@ -6365,15 +6376,7 @@ static struct ggml_cgraph * llama_build_graph( // check if we should build the worst-case graph (for memory measurement) const bool worst_case = ggml_tallocr_is_measure(lctx.alloc); - // keep track of the input that has already been allocated - bool alloc_inp_tokens = false; - bool alloc_inp_embd = false; - bool alloc_inp_pos = false; - bool alloc_inp_KQ_mask = false; - bool alloc_inp_K_shift = false; - // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) - // TODO: improve handling of input and output tensors, then replace this with ggml_set_name llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { if (il >= 0) { ggml_format_name(cur, "%s-%d", name, il); @@ -6381,127 +6384,79 @@ static struct ggml_cgraph * llama_build_graph( ggml_set_name(cur, name); } - if (!lctx.cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu); } } - - // - // allocate input tensors and set input data - // - - if (!alloc_inp_tokens && strcmp(name, "inp_tokens") == 0) { - ggml_tallocr_alloc(lctx.alloc, cur); - - if (!ggml_tallocr_is_measure(lctx.alloc) && batch.token) { - const int64_t n_tokens = cur->ne[0]; - - ggml_backend_tensor_set(cur, batch.token, 0, n_tokens*ggml_element_size(cur)); - } - - alloc_inp_tokens = true; - } - - if (!alloc_inp_embd && strcmp(name, "inp_embd") == 0 && batch.embd) { - ggml_tallocr_alloc(lctx.alloc, cur); - - if (!ggml_tallocr_is_measure(lctx.alloc) && batch.embd) { - const int64_t n_embd = cur->ne[0]; - const int64_t n_tokens = cur->ne[1]; - - ggml_backend_tensor_set(cur, batch.embd, 0, n_tokens*n_embd*ggml_element_size(cur)); - } - - alloc_inp_embd = true; - } - - if (!alloc_inp_pos && strcmp(name, "inp_pos") == 0) { - ggml_tallocr_alloc(lctx.alloc, cur); - - if (!ggml_tallocr_is_measure(lctx.alloc) && batch.pos) { - const int64_t n_tokens = cur->ne[0]; - - static_assert(std::is_same::value, "llama_pos must be int32_t"); - ggml_backend_tensor_set(cur, batch.pos, 0, n_tokens*ggml_element_size(cur)); - } - - alloc_inp_pos = true; - } - - if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) { - ggml_tallocr_alloc(lctx.alloc, cur); - - if (!ggml_tallocr_is_measure(lctx.alloc)) { - const int64_t n_kv = cur->ne[0]; - const int64_t n_tokens = cur->ne[1]; - - float * data; - if (ggml_backend_buffer_is_host(cur->buffer)) { - data = (float *) cur->data; - } else { - lctx.buf_copy.resize(ggml_nbytes(cur)); - data = (float *) lctx.buf_copy.data(); - } - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j][0]; - - for (int i = 0; i < n_kv; ++i) { - float f; - if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { - f = -INFINITY; - } else { - f = 0; - } - data[h*(n_kv*n_tokens) + j*n_kv + i] = f; - } - } - } - - if (data != cur->data) { - ggml_backend_tensor_set(cur, data, 0, ggml_nbytes(cur)); - } - } - - alloc_inp_KQ_mask = true; - } - - if (!alloc_inp_K_shift && strcmp(name, "K_shift") == 0) { - ggml_tallocr_alloc(lctx.alloc, cur); - - if (!ggml_tallocr_is_measure(lctx.alloc)) { - const int64_t n_ctx = cur->ne[0]; - - int32_t * data; - if (ggml_backend_buffer_is_host(cur->buffer)) { - data = (int32_t *) cur->data; - } else { - lctx.buf_copy.resize(ggml_nbytes(cur)); - data = (int32_t *) lctx.buf_copy.data(); - } - - for (int i = 0; i < n_ctx; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } - - if (data != cur->data) { - ggml_backend_tensor_set(cur, data, 0, ggml_nbytes(cur)); - } - } - - alloc_inp_K_shift = true; - } }; struct ggml_cgraph * result = NULL; struct llm_build_context llm(lctx, batch, cb, worst_case); + // + // set input data + // + + if (!ggml_tallocr_is_measure(lctx.alloc)) { + if (batch.token) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); + } + + if (batch.embd) { + const int64_t n_embd = llm.n_embd; + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); + } + + if (batch.pos) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); + } + + { + const int64_t n_kv = llm.n_kv; + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + float * data = (float *) lctx.inp_KQ_mask->data; + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j][0]; + + for (int i = 0; i < n_kv; ++i) { + float f; + if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { + f = -INFINITY; + } else { + f = 0; + } + data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } + } + } + } + + if (llm.do_rope_shift) { + const int64_t n_ctx = llm.n_ctx; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); + int32_t * data = (int32_t *) lctx.inp_K_shift->data; + + for (int i = 0; i < n_ctx; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } + } + } + llm.init(); switch (model.arch) { @@ -9964,6 +9919,35 @@ struct llama_context * llama_new_context_with_model( ctx->embedding.resize(hparams.n_embd); } + // graph inputs + { + ggml_init_params init_params = { + /* .mem_size */ ggml_tensor_overhead()*5, + /* .mem_buffer */ nullptr, + /* .no_alloc */ true, + }; + ctx->ctx_input = ggml_init(init_params); + + ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); + ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch); + ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); + ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch); + ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx); + + ggml_set_name(ctx->inp_tokens, "inp_tokens"); + ggml_set_name(ctx->inp_embd, "inp_embd"); + ggml_set_name(ctx->inp_pos, "inp_pos"); + ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask"); + ggml_set_name(ctx->inp_K_shift, "inp_K_shift"); + + ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true)); + + LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__, + ggml_backend_buffer_name(ctx->buf_input), + ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0); + } + + // scheduler and compute buffers { // buffer types used for the compute buffer of each backend std::vector backend_buft; @@ -9990,9 +9974,6 @@ struct llama_context * llama_new_context_with_model( // initialize scheduler with the worst-case graph ggml_backend_sched_init_measure(ctx->sched, gf); - // note: the number of splits during measure is higher than during inference due to the kv shift - int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); - LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits); ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu); for (ggml_backend_t backend : ctx->backends) { @@ -10001,6 +9982,10 @@ struct llama_context * llama_new_context_with_model( ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); } + + // note: the number of splits during measure is higher than during inference due to the kv shift + int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); + LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits); } }