mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-06 02:48:57 +01:00
gguf : fix writing tensors
This commit is contained in:
parent
11ef380c2a
commit
1495735aac
56
gguf.py
56
gguf.py
@ -13,9 +13,9 @@ import numpy as np
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
QR_0 = 2
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
Q4_0 = 2
|
||||
Q4_1 = 3
|
||||
# Q4_2 = 4 # support has been removed
|
||||
# Q4_3 = 5 # support has been removed
|
||||
@ -32,16 +32,16 @@ class GGMLQuantizationType(IntEnum):
|
||||
|
||||
|
||||
class GGUFValueType(IntEnum):
|
||||
UINT8 = 0
|
||||
INT8 = 1
|
||||
UINT16 = 2
|
||||
INT16 = 3
|
||||
UINT32 = 4
|
||||
INT32 = 5
|
||||
UINT8 = 0
|
||||
INT8 = 1
|
||||
UINT16 = 2
|
||||
INT16 = 3
|
||||
UINT32 = 4
|
||||
INT32 = 5
|
||||
FLOAT32 = 6
|
||||
BOOL = 7
|
||||
STRING = 8
|
||||
ARRAY = 9
|
||||
BOOL = 7
|
||||
STRING = 8
|
||||
ARRAY = 9
|
||||
|
||||
@staticmethod
|
||||
def get_type(val):
|
||||
@ -75,7 +75,9 @@ class GGUFWriter:
|
||||
return cls(f)
|
||||
|
||||
def write_key(self, key: str):
|
||||
self.write_val(key, GGUFValueType.STRING)
|
||||
encoded_key = key.encode("utf8")
|
||||
self.fout.write(struct.pack("<I", len(encoded_key)))
|
||||
self.fout.write(encoded_key)
|
||||
|
||||
def write_uint8(self, key: str, val: int):
|
||||
self.write_key(key)
|
||||
@ -158,29 +160,35 @@ class GGUFWriter:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
||||
self.write_val(name, GGUFValueType.STRING)
|
||||
self.write_key(name)
|
||||
n_dims = len(tensor.shape)
|
||||
self.write_val(n_dims, GGUFValueType.INT32)
|
||||
self.fout.write(struct.pack("<i", n_dims))
|
||||
for i in range(n_dims):
|
||||
self.write_val(tensor.shape[n_dims - 1 - i], GGUFValueType.INT32)
|
||||
self.fout.write(struct.pack("<i", tensor.shape[n_dims - 1 - i]))
|
||||
|
||||
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
||||
self.write_val(dtype, GGUFValueType.INT32)
|
||||
self.fout.write(struct.pack("<i", dtype))
|
||||
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
||||
|
||||
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
||||
pad = offset_data - self.fout.tell()
|
||||
self.fout.write(bytes([0] * pad))
|
||||
self.flush()
|
||||
|
||||
self.tensors.append(tensor)
|
||||
|
||||
def write_tensors(self):
|
||||
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
||||
pad = offset_data - self.fout.tell()
|
||||
print(f"pad: {pad}")
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
|
||||
for tensor in self.tensors:
|
||||
tensor.tofile(self.fout)
|
||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
||||
self.fout.write(bytes([0] * pad))
|
||||
print(f"pad: {pad}")
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
|
||||
def flush(self):
|
||||
self.fout.flush()
|
||||
@ -274,10 +282,10 @@ if __name__ == "__main__":
|
||||
gguf_writer.write_architecture("llama")
|
||||
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||||
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||
tensor1 = np.random.random(size=(7, 10)).astype(np.float32)
|
||||
tensor2 = np.random.random(size=(16, 12)).astype(np.float16)
|
||||
tensor1 = np.ones((7, 8, 3), dtype=np.float32)
|
||||
tensor2 = np.ones((7, 8, 3), dtype=np.float32)
|
||||
gguf_writer.write_tensor_info("tensor1", tensor1)
|
||||
gguf_writer.write_tensor_info("tensor2", tensor2)
|
||||
gguf_writer.write_tensors()
|
||||
|
||||
gguf_writer.close()
|
||||
gguf_writer.close()
|
||||
|
Loading…
Reference in New Issue
Block a user