mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
readme : improve readme for Llava-1.6 example (#6044)
Co-authored-by: Jian Liao <jianliao@adobe.com>
This commit is contained in:
parent
43241adf22
commit
15a333260a
@ -63,12 +63,20 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
|
|||||||
```console
|
```console
|
||||||
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||||
```
|
```
|
||||||
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
|
||||||
|
2) Install the required Python packages:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
pip install -r examples/llava/requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||||
```console
|
```console
|
||||||
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||||
```
|
```
|
||||||
- you will find a llava.projector and a llava.clip file in your model directory
|
- you will find a llava.projector and a llava.clip file in your model directory
|
||||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
|
||||||
|
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||||
```console
|
```console
|
||||||
mkdir vit
|
mkdir vit
|
||||||
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
||||||
@ -76,18 +84,18 @@ cp ../llava-v1.6-vicuna-7b/llava.projector vit/
|
|||||||
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
||||||
```
|
```
|
||||||
|
|
||||||
4) Create the visual gguf model:
|
5) Create the visual gguf model:
|
||||||
```console
|
```console
|
||||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||||
```
|
```
|
||||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||||
|
|
||||||
5) Then convert the model to gguf format:
|
6) Then convert the model to gguf format:
|
||||||
```console
|
```console
|
||||||
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||||
```
|
```
|
||||||
|
|
||||||
6) And finally we can run the llava-cli using the 1.6 model version:
|
7) And finally we can run the llava-cli using the 1.6 model version:
|
||||||
```console
|
```console
|
||||||
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
||||||
```
|
```
|
||||||
|
Loading…
Reference in New Issue
Block a user