backend cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels (#9921)

* backend-cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
Charles Xu 2024-11-15 01:28:50 +01:00 committed by GitHub
parent ae8de6d50a
commit 1607a5e5b0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 273 additions and 22 deletions

View File

@ -940,6 +940,10 @@ ggml/src/ggml-cuda/%.o: \
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
endif # GGML_MUSA
ifndef GGML_NO_CPU_AARCH64
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
endif
ifdef GGML_METAL
MK_CPPFLAGS += -DGGML_USE_METAL
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit

View File

@ -92,6 +92,7 @@ else()
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})

View File

@ -169,6 +169,9 @@ extern "C" {
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft);
#ifdef __cplusplus
}
#endif

View File

@ -236,6 +236,11 @@ else()
message(STATUS "Unknown architecture")
endif()
if (GGML_CPU_AARCH64)
message(STATUS "Using runtime weight conversion of Q4_0 to Q4_0_x_x to enable optimized GEMM/GEMV kernels")
add_compile_definitions(GGML_USE_CPU_AARCH64)
endif()
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")

View File

@ -3385,3 +3385,147 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
}
}
}
// FIXME: this code is duplicated from ggml-aarch64.c
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
block_q4_0x4 out;
for (int i = 0; i < 4; i++) {
out.d[i] = in[i].d;
}
for (int i = 0; i < QK4_0 * 2; i++) {
int src_offset = (i / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (i % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (i % blck_size_interleave);
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
}
return out;
}
// interleave 8 block_q4_0s in blocks of blck_size_interleave
// returns an interleaved block_q4_0x8
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
block_q4_0x8 out;
for (int i = 0; i < 8; i++) {
out.d[i] = in[i].d;
}
for (int i = 0; i < QK4_0 * 4; i++) {
int src_offset = (i / (8 * blck_size_interleave)) * blck_size_interleave;
int src_id = (i % (8 * blck_size_interleave)) / blck_size_interleave;
src_offset += (i % blck_size_interleave);
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
}
return out;
}
static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * restrict data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
block_q4_0x4 * dst = (block_q4_0x4 *)t->data;
const block_q4_0 * src = (const block_q4_0 *)data;
block_q4_0 dst_tmp[4];
int nrow = t->ne[1]; // Number of rows
int nrows_interleaved = 4;
int nblocks = t->ne[0] / QK4_0;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q4_0x4(dst_tmp, interleave_block, 0x88);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor *t, int interleave_block, const void * restrict data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
GGML_ASSERT(interleave_block == 8);
block_q4_0x8 * dst = (block_q4_0x8*)t->data;
const block_q4_0 * src = (const block_q4_0*) data;
block_q4_0 dst_tmp[8];
int nrow = t->ne[1]; // Number of rows
int nrows_interleaved = 8;
int nblocks = t->ne[0] / QK4_0;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++ ) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q4_0x8(dst_tmp, interleave_block, 0x88);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
// Prepare for optimized kernels if applicable
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * restrict data, size_t data_size) {
if (cur->type == repack_type) {
memcpy(cur->data, data, data_size);
return;
}
GGML_ASSERT(cur->type == GGML_TYPE_Q4_0);
switch (repack_type) {
case GGML_TYPE_Q4_0_8_8:
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
break;
case GGML_TYPE_Q4_0_4_8:
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
break;
case GGML_TYPE_Q4_0_4_4:
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
break;
default:
GGML_ABORT("Unsupported type");
}
}
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur) {
if (cur->type == GGML_TYPE_Q4_0) {
// TODO: enable for AVX2 - currently disabled due to bad gemv performance
if (/* ggml_cpu_has_avx2() || */ (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
return GGML_TYPE_Q4_0_8_8;
}
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
return GGML_TYPE_Q4_0_4_8;
}
if (ggml_cpu_has_neon()) {
return GGML_TYPE_Q4_0_4_4;
}
}
return cur->type;
}

View File

@ -21,6 +21,9 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
#ifdef __cplusplus
}
#endif

View File

@ -7330,6 +7330,7 @@ static void ggml_compute_forward_group_norm(
static void ggml_compute_forward_mul_mat_one_chunk(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const enum ggml_type type,
const int64_t num_rows_per_vec_dot,
const int64_t ir0_start,
const int64_t ir0_end,
@ -7341,8 +7342,6 @@ static void ggml_compute_forward_mul_mat_one_chunk(
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
@ -7430,7 +7429,11 @@ static void ggml_compute_forward_mul_mat(
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
enum ggml_type type = src0->type;
if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
type = (enum ggml_type)(intptr_t)src0->extra;
}
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
@ -7469,15 +7472,15 @@ static void ggml_compute_forward_mul_mat(
if (src1_cont) {
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
nb01/ggml_type_size(type),
(const char *)src1->data + i12*nb12 + i13*nb13,
nb11/ggml_type_size(src1->type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
src0->type,
type,
src1->type,
dst->type))
goto UseGgmlGemm1;
@ -7530,15 +7533,15 @@ UseGgmlGemm1:;
for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type),
nb01/ggml_type_size(type),
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
row_size/ggml_type_size(vec_dot_type),
(char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type),
ith, nth,
src0->type,
type,
vec_dot_type,
dst->type))
goto UseGgmlGemm2;
@ -7623,7 +7626,7 @@ UseGgmlGemm2:;
const int64_t ir1_start = dr1 * ith1;
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
if (nth >= nchunk0 * nchunk1) {
break;

View File

@ -1,6 +1,7 @@
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-aarch64.h"
#include "ggml-impl.h"
#include <cctype>
#include <string>
@ -69,15 +70,84 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
}
#endif
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
static ggml_backend_buffer_type_t bufts[] = {
#ifdef GGML_USE_CPU_HBM
ggml_backend_cpu_hbm_buffer_type(),
#endif
NULL
// buffer type AARCH64
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *)ggml_aarch64_get_optimal_repack_type(tensor); // NOLINT
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
enum ggml_type repack_type = (enum ggml_type)(intptr_t)tensor->extra;
ggml_aarch64_repack_tensor(tensor, repack_type, data, size);
GGML_UNUSED(buffer);
}
static const char * ggml_backend_cpu_aarch64_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_AARCH64";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_cpu_aarch64_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
auto * buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
if (buffer == NULL) {
return NULL;
}
buffer->buft = buft;
buffer->iface.init_tensor = ggml_backend_cpu_aarch64_buffer_init_tensor;
buffer->iface.set_tensor = ggml_backend_cpu_aarch64_buffer_set_tensor;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_aarch64 = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_aarch64_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_aarch64_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ NULL,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_aarch64;
}
bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft) {
return buft == ggml_backend_cpu_aarch64_buffer_type();
}
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
std::vector<ggml_backend_buffer_type_t> bufts;
#ifdef GGML_USE_CPU_HBM
bufts.push_back(ggml_backend_cpu_hbm_buffer_type());
#endif
#ifdef GGML_USE_CPU_AARCH64
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
#endif
bufts.push_back(NULL);
return bufts;
}();
return bufts.data();
GGML_UNUSED(device);
}
@ -383,6 +453,21 @@ static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_b
}
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
if (src0 && src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
if (op->op != GGML_OP_MUL_MAT || src0->type != GGML_TYPE_Q4_0 || ggml_aarch64_get_optimal_repack_type(src0) == GGML_TYPE_Q4_0) {
return false;
}
}
for (int i = 1; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && ggml_backend_cpu_buft_is_aarch64(op->src[i]->buffer->buft)) {
return false;
}
}
switch (op->op) {
case GGML_OP_CPY:
return
@ -391,13 +476,13 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
op->type != GGML_TYPE_IQ1_S &&
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
case GGML_OP_ROPE_BACK:
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
case GGML_OP_IM2COL_BACK:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
case GGML_OP_OUT_PROD:
return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
return (src0->type == GGML_TYPE_F32 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32;
default:
return true;
}
@ -406,7 +491,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
}
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
return ggml_backend_buft_is_host(buft) || ggml_backend_cpu_buft_is_aarch64(buft);
GGML_UNUSED(dev);
}
@ -566,6 +651,9 @@ static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
};
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
// init CPU feature detection
ggml_cpu_init();
static struct ggml_backend_reg ggml_backend_cpu_reg = {
/* .iface = */ ggml_backend_cpu_reg_i,
/* .context = */ NULL,

View File

@ -7254,7 +7254,7 @@ static llama_model::buft_list_t make_cpu_buft_list(llama_model & model) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_cpu_get_extra_bufts");
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) {