From 1731d4238f9e4f925a750810e7f5480827c66dcf Mon Sep 17 00:00:00 2001 From: luoyu-intel Date: Thu, 22 Aug 2024 12:50:10 +0800 Subject: [PATCH] [SYCL] Add oneDNN primitive support (#9091) * add onednn * add sycl_f16 * add dnnl stream * add engine map * use dnnl for intel only * use fp16fp16fp16 * update doc --- CMakePresets.json | 5 +- docs/backend/SYCL.md | 14 ++--- ggml/src/CMakeLists.txt | 10 ++++ ggml/src/ggml-sycl.cpp | 16 +++++- ggml/src/ggml-sycl/common.hpp | 50 +++++++++++++++++ ggml/src/ggml-sycl/gemm.hpp | 101 ++++++++++++++++++++++++++++++++++ 6 files changed, 186 insertions(+), 10 deletions(-) create mode 100644 ggml/src/ggml-sycl/gemm.hpp diff --git a/CMakePresets.json b/CMakePresets.json index bdad38952..ce627b4d3 100644 --- a/CMakePresets.json +++ b/CMakePresets.json @@ -28,6 +28,7 @@ { "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } }, { "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } }, { "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } }, + { "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } }, { "name": "arm64-windows-msvc", "hidden": true, @@ -60,6 +61,8 @@ { "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] }, { "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] }, - { "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] } + { "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] }, + { "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }, + { "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] } ] } diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md index 59a39fbb6..e838b2be6 100644 --- a/docs/backend/SYCL.md +++ b/docs/backend/SYCL.md @@ -20,7 +20,7 @@ **oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include: - **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers. -- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*. +- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*. - **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs. - **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets. @@ -28,10 +28,6 @@ The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*). -When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend. - -It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [IntelĀ® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. - ## Recommended Release The SYCL backend would be broken by some PRs due to no online CI. @@ -45,6 +41,10 @@ The following release is verified with good quality: ## News + +- 2024.8 + - Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs. + - 2024.5 - Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770. - Arch Linux is verified successfully. @@ -196,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable. -Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs. +Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs. - **Adding support to Nvidia GPUs** @@ -255,8 +255,6 @@ or # Export relevant ENV variables source /opt/intel/oneapi/setvars.sh -# Build LLAMA with MKL BLAS acceleration for intel GPU - # Option 1: Use FP32 (recommended for better performance in most cases) cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 1775ef3cc..951cec694 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -549,6 +549,13 @@ if (GGML_SYCL) file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp") list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp") + find_package(DNNL) + message("-- DNNL found:"${DNNL_FOUND}) + if (GGML_SYCL_TARGET STREQUAL "INTEL") + add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND}) + else() + add_compile_definitions(GGML_SYCL_DNNL=0) + endif() if (WIN32) find_package(IntelSYCL REQUIRED) find_package(MKL REQUIRED) @@ -561,6 +568,9 @@ if (GGML_SYCL) set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl) endif() endif() + if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL") + list(APPEND GGML_EXTRA_LIBS DNNL::dnnl) + endif() endif() if (GGML_RPC) diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 94cd4b110..0d884f89a 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -38,6 +38,7 @@ #include "ggml-sycl/backend.hpp" #include "ggml-sycl/presets.hpp" +#include "ggml-sycl/gemm.hpp" bool ggml_sycl_loaded(void); void ggml_sycl_free_data(struct ggml_tensor * tensor); @@ -2482,6 +2483,7 @@ inline void ggml_sycl_op_mul_mat_sycl( const sycl::half alpha_f16 = 1.0f; const sycl::half beta_f16 = 0.0f; +#if !GGML_SYCL_DNNL SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm( *stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, @@ -2491,6 +2493,13 @@ inline void ggml_sycl_op_mul_mat_sycl( dpct::library_data_t::real_half))); const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); +#else + auto dnnl_stream = ctx.stream_dnnl(stream); + DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt(), + src0_ptr, DnnlGemmWrapper::to_dt(), dst_f16.get(), DnnlGemmWrapper::to_dt()); + const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16); + to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream); +#endif } else { // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n"); @@ -2513,13 +2522,18 @@ inline void ggml_sycl_op_mul_mat_sycl( const float alpha = 1.0f; const float beta = 0.0f; - +#if !GGML_SYCL_DNNL SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm( *stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream), dst_dd_i, ldc))); +#else + auto dnnl_stream = ctx.stream_dnnl(stream); + DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt(), + src0_ddf_i, DnnlGemmWrapper::to_dt(), dst_dd_i, DnnlGemmWrapper::to_dt()); +#endif } (void) dst; (void) src1_ddq_i; diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index 78cd682ad..05947ccb7 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -19,6 +19,10 @@ #include "dpct/helper.hpp" #include "ggml-sycl.h" #include "presets.hpp" +#if GGML_SYCL_DNNL +#include "dnnl.hpp" +#include "dnnl_sycl.hpp" +#endif #define GGML_COMMON_DECL_SYCL #define GGML_COMMON_IMPL_SYCL @@ -277,6 +281,52 @@ struct ggml_backend_sycl_context { return stream(device, 0); } +#if GGML_SYCL_DNNL + dnnl::engine make_engine(sycl::queue* q) { + // Get the device associated with the queue + sycl::device dev = q->get_device(); + // Get the context associated with the queue + sycl::context ctx = q->get_context(); + const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx); + return eng; + } + + std::unordered_map stream_map; + std::unordered_map engine_map; + dnnl::stream stream_dnnl(int device, int _stream) { + auto q = stream(device, _stream); + return stream_dnnl(q); + } + dnnl::engine engine_dnnl(sycl::queue* qptr) { + auto it = engine_map.find(qptr); + if (it == engine_map.end()) { + auto eng = make_engine(qptr); + engine_map[qptr] = eng; + return eng; + } + else + { + return it->second; + } + } + dnnl::stream stream_dnnl(sycl::queue* qptr) { + auto it = stream_map.find(qptr); + if (it == stream_map.end()) { + auto eng = engine_dnnl(qptr); + auto stream = dnnl::sycl_interop::make_stream(eng, *qptr); + stream_map[qptr] = stream; + return stream; + } + else + { + return it->second; + } + } + dnnl::stream stream_dnnl() { + return stream_dnnl(device, 0); + } +#endif + // pool std::unique_ptr pools[GGML_SYCL_MAX_DEVICES]; diff --git a/ggml/src/ggml-sycl/gemm.hpp b/ggml/src/ggml-sycl/gemm.hpp new file mode 100644 index 000000000..2ad9b36f4 --- /dev/null +++ b/ggml/src/ggml-sycl/gemm.hpp @@ -0,0 +1,101 @@ +// +// MIT license +// Copyright (C) 2024 Intel Corporation +// SPDX-License-Identifier: MIT +// + +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// + +#ifndef GGML_SYCL_GEMM_HPP +#define GGML_SYCL_GEMM_HPP + +#include +#include + +#include "ggml-sycl.h" + +#if GGML_SYCL_DNNL + +#include "dnnl.hpp" +#include "dnnl_sycl.hpp" + +class DnnlGemmWrapper { +public: + using dt = dnnl::memory::data_type; + using tag = dnnl::memory::format_tag; + + template + static constexpr dt to_dt() { + if constexpr (std::is_same_v) return dt::f32; + else if constexpr (std::is_same_v) return dt::f16; + else static_assert(0); + } + + static inline void row_gemm(sycl::queue& q, bool a_trans, + bool b_trans, int m, int n, int k, + const void* a, dt at, const void* b, dt bt, void* c, dt ct) + { + // Get the device associated with the queue + sycl::device dev = q.get_device(); + // Get the context associated with the queue + sycl::context ctx = q.get_context(); + const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx); + const dnnl::stream stream = dnnl::sycl_interop::make_stream(eng, q); + dnnl::memory::dims a_dims = { m, k }; + dnnl::memory::dims b_dims = { k, n }; + dnnl::memory::dims c_dims = { m, n }; + const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab); + const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab); + const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab); + auto a_mem = dnnl::memory(a_in_md, eng, (void*)a); + auto b_mem = dnnl::memory(b_in_md, eng, (void*)b); + auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md); + auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c); + + // Create the primitive. + auto matmul_prim = dnnl::matmul(matmul_pd); + // Primitive arguments. + std::unordered_map matmul_args; + matmul_args.insert({ DNNL_ARG_SRC, a_mem }); + matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem }); + matmul_args.insert({ DNNL_ARG_DST, c_mem }); + + matmul_prim.execute(stream, matmul_args); + } + + + static inline void row_gemm(const dnnl::stream& stream, bool a_trans, + bool b_trans, int m, int n, int k, + const void* a, dt at, const void* b, dt bt, void* c, dt ct) + { + auto const eng = stream.get_engine(); + dnnl::memory::dims a_dims = { m, k }; + dnnl::memory::dims b_dims = { k, n }; + dnnl::memory::dims c_dims = { m, n }; + const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab); + const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab); + const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab); + auto a_mem = dnnl::memory(a_in_md, eng, (void*)a); + auto b_mem = dnnl::memory(b_in_md, eng, (void*)b); + auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md); + auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c); + + // Create the primitive. + auto matmul_prim = dnnl::matmul(matmul_pd); + // Primitive arguments. + std::unordered_map matmul_args; + matmul_args.insert({ DNNL_ARG_SRC, a_mem }); + matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem }); + matmul_args.insert({ DNNL_ARG_DST, c_mem }); + + matmul_prim.execute(stream, matmul_args); + } +}; + +#endif + +#endif // GGML_SYCL_GEMM_HPP