mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 14:20:31 +01:00
[SYCL] Update SYCL-Rope op and Refactor (#8157)
* align with rope.cu and move sycl-op to a single file
This commit is contained in:
parent
d0a7145ba9
commit
197fe6c1d7
@ -978,114 +978,6 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
|
||||
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
|
||||
}
|
||||
|
||||
struct rope_corr_dims {
|
||||
float v[4];
|
||||
};
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
static void rope_yarn(
|
||||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||
float * cos_theta, float * sin_theta
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
|
||||
}
|
||||
*cos_theta = sycl::cos(theta) * mscale;
|
||||
*sin_theta = sycl::sin(theta) * mscale;
|
||||
}
|
||||
|
||||
// rope == RoPE == rotary positional embedding
|
||||
template<typename T, bool has_pos>
|
||||
static void rope(
|
||||
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||||
,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1));
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
const int i = row*ncols + col;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
const int p = has_pos ? pos[i2] : 0;
|
||||
const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + 1];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_pos, bool has_freq_facs>
|
||||
static void rope_neox(
|
||||
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
|
||||
const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
|
||||
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1));
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
const int ib = col / n_dims;
|
||||
const int ic = col % n_dims;
|
||||
|
||||
if (ib > 0) {
|
||||
const int i = row*ncols + ib*n_dims + ic;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ncols + ib*n_dims + ic/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
float cur_rot = inv_ndims * ic - ib;
|
||||
|
||||
const int p = has_pos ? pos[i2] : 0;
|
||||
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
||||
|
||||
const float theta_base =
|
||||
p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int row = item_ct1.get_group(1);
|
||||
@ -2241,110 +2133,6 @@ static void clamp_f32_sycl(const float *x, float *dst, const float min,
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
|
||||
const int32_t *pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor,
|
||||
rope_corr_dims corr_dims, queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||||
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
||||
if (pos == nullptr) {
|
||||
/*
|
||||
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
||||
freq_base, ext_factor, attn_factor, corr_dims,
|
||||
item_ct1);
|
||||
});
|
||||
} else {
|
||||
/*
|
||||
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
||||
freq_base, ext_factor, attn_factor, corr_dims,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
|
||||
const int32_t *pos, float freq_scale,
|
||||
int p_delta_rows, float freq_base, float ext_factor,
|
||||
float attn_factor, rope_corr_dims corr_dims,
|
||||
const float * freq_factors, queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||||
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
const float inv_ndims = -1.0f / n_dims;
|
||||
|
||||
if (pos == nullptr) {
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
if (freq_factors == nullptr) {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, inv_ndims, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
} else {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, inv_ndims, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
} else {
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
|
||||
});
|
||||
} else {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
|
||||
const int nrows, queue_ptr stream) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
@ -3461,97 +3249,6 @@ catch (sycl::exception const &exc) {
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
ggml_tensor *dst, const float *src0_dd,
|
||||
const float *src1_dd, float *dst_dd,
|
||||
const queue_ptr &main_stream) {
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||||
|
||||
// RoPE alteration for extended context
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const float * freq_factors = nullptr;
|
||||
const int32_t * pos = nullptr;
|
||||
if ((mode & 1) == 0) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(src1->ne[0] == ne2);
|
||||
pos = (const int32_t *) src1_dd;
|
||||
}
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
|
||||
#pragma message("TODO: update rope NORM mode to match NEOX mode")
|
||||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
|
||||
|
||||
if (is_neox) {
|
||||
pos = (const int32_t *) src1_dd;
|
||||
|
||||
if (src2 != nullptr) {
|
||||
freq_factors = (const float *) src2->data;
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
|
||||
}
|
||||
|
||||
rope_corr_dims corr_dims;
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||
|
||||
// compute
|
||||
if (is_neox) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_sycl(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
|
||||
ne00, n_dims, nrows, pos, freq_scale, ne01,
|
||||
freq_base, ext_factor, attn_factor, corr_dims,
|
||||
freq_factors, main_stream);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_sycl(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
|
||||
nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, main_stream);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||||
const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd,
|
||||
@ -6241,7 +5938,9 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
case GGML_OP_ROPE:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
|
@ -19,5 +19,6 @@
|
||||
#include "dmmv.hpp"
|
||||
#include "mmq.hpp"
|
||||
#include "mmvq.hpp"
|
||||
#include "rope.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
||||
|
275
ggml/src/ggml-sycl/rope.cpp
Normal file
275
ggml/src/ggml-sycl/rope.cpp
Normal file
@ -0,0 +1,275 @@
|
||||
#include "rope.hpp"
|
||||
|
||||
struct rope_corr_dims {
|
||||
float v[2];
|
||||
};
|
||||
|
||||
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
|
||||
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
|
||||
}
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
static void rope_yarn(
|
||||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||
float * cos_theta, float * sin_theta) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
|
||||
}
|
||||
*cos_theta = sycl::cos(theta) * mscale;
|
||||
*sin_theta = sycl::sin(theta) * mscale;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
static void rope_norm(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1));
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + 1];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
static void rope_neox(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1));
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void rope_norm_sycl(
|
||||
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||||
const sycl::range<3> block_nums(1, num_blocks_x, nr);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
/*
|
||||
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
|
||||
ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
} else {
|
||||
/*
|
||||
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||||
*/
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
|
||||
ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void rope_neox_sycl(
|
||||
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||||
const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||||
const sycl::range<3> block_nums(1, num_blocks_x, nr);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
} else {
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
|
||||
p_delta_rows, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, freq_factors,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_sycl_op_rope(
|
||||
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||||
|
||||
// RoPE alteration for extended context
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
float ext_factor;
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
|
||||
const int32_t * pos = (const int32_t *) src1_dd;
|
||||
|
||||
const float * freq_factors = nullptr;
|
||||
if (src2 != nullptr) {
|
||||
freq_factors = (const float *) src2->data;
|
||||
}
|
||||
|
||||
rope_corr_dims corr_dims;
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||
|
||||
// compute
|
||||
if (is_neox) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_sycl(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_sycl(
|
||||
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, main_stream
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_norm_sycl(
|
||||
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, main_stream
|
||||
);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_norm_sycl(
|
||||
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, main_stream
|
||||
);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
22
ggml/src/ggml-sycl/rope.hpp
Normal file
22
ggml/src/ggml-sycl/rope.hpp
Normal file
@ -0,0 +1,22 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_ROPE_HPP
|
||||
#define GGML_SYCL_ROPE_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_rope(
|
||||
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream);
|
||||
|
||||
#endif // GGML_SYCL_ROPE_HPP
|
Loading…
Reference in New Issue
Block a user