mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-30 06:30:15 +01:00
metal : concurrently dispatch commands (#2358)
* metal: concurrently dispatch commands Function `ggml_metal_graph_find_concurrency` will run and write commands that can be issued concurrently to metal context `concur_list` array, when `ggml_metal_graph_compute` is called for the first time. * metal: don't call find_concurrency automatically. * metal : code style changes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
9a08eaf3c4
commit
1aa18ef994
@ -61,6 +61,13 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// try to find operations that can be run concurrently in the graph
|
||||
// you should run it again if the topology of your graph changes
|
||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
||||
// if the graph has been optimized for concurrently dispatch
|
||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
145
ggml-metal.m
145
ggml-metal.m
@ -36,6 +36,9 @@ struct ggml_metal_context {
|
||||
int n_buffers;
|
||||
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||
|
||||
int concur_list[GGML_MAX_NODES];
|
||||
int concur_list_len;
|
||||
|
||||
// custom kernels
|
||||
#define GGML_METAL_DECL_KERNEL(name) \
|
||||
id<MTLFunction> function_##name; \
|
||||
@ -98,6 +101,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
ctx->device = MTLCreateSystemDefaultDevice();
|
||||
ctx->queue = [ctx->device newCommandQueue];
|
||||
ctx->n_buffers = 0;
|
||||
ctx->concur_list_len = 0;
|
||||
|
||||
// determine if we can use MPS
|
||||
if (MPSSupportsMTLDevice(ctx->device)) {
|
||||
@ -217,6 +221,13 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
|
||||
ctx->n_cb = n_cb;
|
||||
}
|
||||
|
||||
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
|
||||
if (ctx->concur_list_len) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||
// Metal buffer based on the host memory pointer
|
||||
@ -355,11 +366,98 @@ void ggml_metal_get_tensor(
|
||||
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
||||
}
|
||||
|
||||
void ggml_metal_graph_find_concurrency(
|
||||
struct ggml_metal_context * ctx,
|
||||
struct ggml_cgraph * gf) {
|
||||
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
||||
int nodes_unused[GGML_MAX_NODES];
|
||||
|
||||
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
|
||||
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
|
||||
ctx->concur_list_len = 0;
|
||||
|
||||
int n_left = gf->n_nodes;
|
||||
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
||||
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
||||
|
||||
while (n_left > 0) {
|
||||
// number of nodes at a layer (that can be issued concurrently)
|
||||
int concurrency = 0;
|
||||
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
||||
if (nodes_unused[i]) {
|
||||
// if the requirements for gf->nodes[i] are satisfied
|
||||
int exe_flag=1;
|
||||
// scan all srcs
|
||||
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
||||
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
||||
if (src_cur) {
|
||||
// if is leaf nodes it's satisfied.
|
||||
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
|
||||
|
||||
// otherwise this src should be the output from previous nodes.
|
||||
int is_found = 0;
|
||||
// scan 2*search_depth back because we inserted barrier.
|
||||
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
||||
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
|
||||
}
|
||||
if (is_found == 0) {exe_flag = 0; break;}
|
||||
}
|
||||
}
|
||||
if (exe_flag) {
|
||||
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
||||
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
||||
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
||||
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
||||
for (int j = n_start; j < i; j++) {
|
||||
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
||||
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
||||
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
|
||||
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
|
||||
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
||||
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
||||
continue;
|
||||
} else {
|
||||
exe_flag = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (exe_flag) {
|
||||
ctx->concur_list[level_pos + concurrency] = i;
|
||||
nodes_unused[i] = 0;
|
||||
concurrency++;
|
||||
ctx->concur_list_len++;
|
||||
}
|
||||
}
|
||||
}
|
||||
n_left -= concurrency;
|
||||
// adding a barrier different layer
|
||||
ctx->concur_list[level_pos + concurrency] = -1;
|
||||
ctx->concur_list_len++;
|
||||
// jump all sorted nodes at nodes_bak
|
||||
while (!nodes_unused[n_start]) {n_start++;}
|
||||
level_pos += concurrency + 1;
|
||||
}
|
||||
|
||||
if (ctx->concur_list_len > GGML_MAX_NODES) {
|
||||
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_metal_graph_compute(
|
||||
struct ggml_metal_context * ctx,
|
||||
struct ggml_cgraph * gf) {
|
||||
metal_printf("%s: evaluating graph\n", __func__);
|
||||
|
||||
// if there is ctx->concur_list, dispatch concurrently
|
||||
// else fallback to serial dispatch
|
||||
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
||||
|
||||
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
|
||||
|
||||
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
||||
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
||||
|
||||
// create multiple command buffers and enqueue them
|
||||
// then, we encode the graph into the command buffers in parallel
|
||||
|
||||
@ -378,7 +476,7 @@ void ggml_metal_graph_compute(
|
||||
dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb;
|
||||
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||
|
||||
dispatch_async(queue, ^{
|
||||
size_t offs_src0 = 0;
|
||||
@ -390,9 +488,20 @@ void ggml_metal_graph_compute(
|
||||
id<MTLComputeCommandEncoder> encoder = nil;
|
||||
|
||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||
|
||||
for (int ind = node_start; ind < node_end; ++ind) {
|
||||
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
||||
|
||||
if (i == -1) {
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
continue;
|
||||
}
|
||||
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i = node_start; i < node_end; ++i) {
|
||||
metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
||||
|
||||
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
||||
@ -463,7 +572,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
@ -484,7 +593,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
@ -505,7 +614,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const float scale = *(const float *) src1->data;
|
||||
@ -524,7 +633,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_UNARY_OP_SILU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_silu];
|
||||
@ -538,7 +647,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_UNARY_OP_RELU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_relu];
|
||||
@ -552,7 +661,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_UNARY_OP_GELU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
||||
@ -572,7 +681,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const int nth = 32;
|
||||
@ -590,7 +699,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
@ -653,7 +762,7 @@ void ggml_metal_graph_compute(
|
||||
}
|
||||
} else {
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
int nth0 = 32;
|
||||
@ -780,7 +889,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
switch (src0->type) {
|
||||
@ -809,7 +918,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
float eps;
|
||||
@ -832,7 +941,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_NORM:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const float eps = 1e-5f;
|
||||
@ -854,7 +963,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_ALIBI:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
||||
@ -897,7 +1006,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
@ -941,7 +1050,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_CONT:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
}
|
||||
|
||||
const int nth = 32;
|
||||
|
@ -1720,6 +1720,9 @@ static bool llama_eval_internal(
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
if (lctx.ctx_metal && N == 1) {
|
||||
if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
|
||||
ggml_metal_graph_find_concurrency(lctx.ctx_metal,&gf);
|
||||
}
|
||||
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
|
||||
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
|
||||
ggml_metal_get_tensor (lctx.ctx_metal, cur);
|
||||
|
Loading…
Reference in New Issue
Block a user