mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-05 18:44:51 +01:00
convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
This commit is contained in:
parent
49380a23a3
commit
1b4f9c8eb9
@ -47,51 +47,35 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
list_vars = model.state_dict()
|
||||
|
||||
# count tensors to be converted
|
||||
tensor_count = 0
|
||||
for name in list_vars.keys():
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
tensor_count += 1
|
||||
|
||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||
|
||||
# This must be changed when adding/deleting kv
|
||||
kv_count = 17
|
||||
|
||||
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
|
||||
|
||||
print("write gguf header")
|
||||
|
||||
gguf_writer.write_header(tensor_count, kv_count)
|
||||
|
||||
print("write gguf hparams")
|
||||
print("gguf: add key-values, metadata")
|
||||
|
||||
llm_arch = "gptneox"
|
||||
|
||||
gguf_writer.write_name("pythia-70b-deduped")
|
||||
gguf_writer.write_description("gguf test model")
|
||||
gguf_writer.write_architecture(llm_arch)
|
||||
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
|
||||
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
|
||||
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||
gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
|
||||
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
|
||||
gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
||||
gguf_writer.add_name("pythia-70b-deduped")
|
||||
gguf_writer.add_description("gguf test model")
|
||||
gguf_writer.add_architecture(llm_arch)
|
||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||
gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"])
|
||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
|
||||
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
|
||||
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("write gguf tokenizer")
|
||||
print("gguf: add key-values, tokenizer")
|
||||
|
||||
tokens: List[str] = []
|
||||
merges: List[str] = []
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# vocab type gpt2
|
||||
print("Adding gpt2 tokenizer vocab")
|
||||
print("gguf: adding gpt2 tokenizer vocab")
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer = json.load(f)
|
||||
@ -101,12 +85,12 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
|
||||
merges = tokenizer["model"]["merges"]
|
||||
|
||||
gguf_writer.write_tokenizer_model("gpt2")
|
||||
gguf_writer.write_token_list(tokens)
|
||||
gguf_writer.write_token_merges(merges)
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_merges(merges)
|
||||
|
||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
print("Adding special token ids")
|
||||
print("gguf: adding special token ids")
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
@ -116,33 +100,33 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
if "bos_token" in tokenizer_config:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]:
|
||||
gguf_writer.write_uint32("tokenizer.ggml.bos_token_id", key["id"] )
|
||||
gguf_writer.add_bos_token_id(key["id"])
|
||||
|
||||
if "eos_token" in tokenizer_config:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["eos_token"]:
|
||||
gguf_writer.write_uint32("tokenizer.ggml.eos_token_id", key["id"] )
|
||||
gguf_writer.add_eos_token_id(key["id"])
|
||||
|
||||
if "unk_token" in tokenizer_config:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["unk_token"]:
|
||||
gguf_writer.write_uint32("tokenizer.ggml.unknown_token_id", key["id"] )
|
||||
gguf_writer.add_unk_token_id(key["id"])
|
||||
|
||||
if "sep_token" in tokenizer_config:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["sep_token"]:
|
||||
gguf_writer.write_uint32("tokenizer.ggml.separator_token_id", key["id"] )
|
||||
gguf_writer.add_sep_token_id(key["id"])
|
||||
|
||||
if "pad_token" in tokenizer_config:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]:
|
||||
gguf_writer.write_uint32("tokenizer.ggml.padding_token_id", key["id"] )
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
||||
# tensor info
|
||||
print("write gguf tensor info")
|
||||
print("gguf: add gguf tensor info")
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
@ -167,19 +151,25 @@ for name in list_vars.keys():
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
gguf_writer.write_tensor_info(name, data)
|
||||
gguf_writer.add_tensor_info(name, data)
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write key-values")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensor info")
|
||||
gguf_writer.write_ti_data_to_file()
|
||||
|
||||
# tensor data
|
||||
print("write gguf tensor data")
|
||||
print("gguf: write tensor data")
|
||||
|
||||
for name in list_vars.keys():
|
||||
data = list_vars[name].squeeze().numpy()
|
||||
print("Process tensor: " + name + " with shape: ", data.shape)
|
||||
# print("Process tensor: " + name + " with shape: ", data.shape)
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
print(" Skip tensor: " + name)
|
||||
# print(" Skip tensor: " + name)
|
||||
continue
|
||||
|
||||
n_dims = len(data.shape)
|
||||
@ -188,23 +178,23 @@ for name in list_vars.keys():
|
||||
ftype_cur = 0
|
||||
if ftype != 0:
|
||||
if name.endswith(".weight") and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
# print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
# print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
# print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
gguf_writer.write_tensor(data)
|
||||
gguf_writer.write_tensor_to_file(data)
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("gguf: conversion done, output file: " + fname_out)
|
||||
print("")
|
||||
|
Loading…
Reference in New Issue
Block a user