mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
BERT tokenizer fixes (#6498)
Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
This commit is contained in:
parent
c4a3a4ff47
commit
1b67731e18
@ -2212,23 +2212,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos,
|
||||
bool special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos,
|
||||
bool special) {
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + add_bos;
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -223,14 +223,14 @@ void llama_batch_add(
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos,
|
||||
bool special = false);
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos,
|
||||
bool special = false);
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// tokenizes a token into a piece
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
|
@ -227,15 +227,14 @@ class Model(ABC):
|
||||
return ("pytorch_model.bin",)
|
||||
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
|
||||
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
# used for GPT-2 BPE and WordPiece vocabs
|
||||
def get_basic_vocab(self) -> tuple[list[str], list[int]]:
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
@ -255,11 +254,15 @@ class Model(ABC):
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
return tokens, toktypes
|
||||
|
||||
def _set_vocab_gpt2(self) -> None:
|
||||
tokens, toktypes = self.get_basic_vocab()
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_qwen(self):
|
||||
@ -2043,34 +2046,25 @@ class BertModel(Model):
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
def set_vocab(self):
|
||||
# use huggingface vocab to get all tokens
|
||||
vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
|
||||
tokens, scores, toktypes = zip(*vocab.all_tokens())
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
self.vocab_size = vocab.vocab_size
|
||||
tokens, toktypes = self.get_basic_vocab()
|
||||
self.vocab_size = len(tokens)
|
||||
|
||||
# we need this to validate the size of the token_type embeddings
|
||||
# though currently we are passing all zeros to the token_type embeddings
|
||||
n_token_types = len(set(toktypes))
|
||||
self.gguf_writer.add_token_type_count(n_token_types)
|
||||
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
|
||||
|
||||
# convert to phantom space vocab
|
||||
def phantom(tok, typ):
|
||||
if tok.startswith(b"[") and tok.endswith(b"]"):
|
||||
def phantom(tok):
|
||||
if tok.startswith("[") and tok.endswith("]"):
|
||||
return tok
|
||||
if tok.startswith(b"##"):
|
||||
if tok.startswith("##"):
|
||||
return tok[2:]
|
||||
return b"\xe2\x96\x81" + tok
|
||||
tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
|
||||
|
||||
# set up bos and eos tokens (cls and sep)
|
||||
self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
|
||||
return "\u2581" + tok
|
||||
tokens = list(map(phantom, tokens))
|
||||
|
||||
# add vocab to gguf
|
||||
self.gguf_writer.add_tokenizer_model("bert")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
# handle special tokens
|
||||
@ -2142,16 +2136,6 @@ class NomicBertModel(BertModel):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||
|
||||
def get_tensors(self):
|
||||
assert self.vocab_size is not None
|
||||
for name, data in super().get_tensors():
|
||||
# Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
|
||||
if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
|
||||
rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
|
||||
assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
|
||||
data = data[:self.vocab_size, :]
|
||||
yield name, data
|
||||
|
||||
|
||||
@Model.register("GemmaForCausalLM")
|
||||
class GemmaModel(Model):
|
||||
@ -2327,7 +2311,8 @@ class MambaModel(Model):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert big float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
|
||||
new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
|
||||
if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
@ -1,4 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
21
convert.py
21
convert.py
@ -33,7 +33,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
import gguf
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
from typing_extensions import Self, TypeAlias
|
||||
|
||||
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
||||
faulthandler.register(signal.SIGUSR1)
|
||||
@ -517,7 +517,7 @@ class LlamaHfVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "hfft"
|
||||
|
||||
def __init__(self, base_path: Path, ignore_nonllama: bool = False):
|
||||
def __init__(self, base_path: Path):
|
||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding='utf-8') as f:
|
||||
@ -525,9 +525,7 @@ class LlamaHfVocab(Vocab):
|
||||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if ignore_nonllama:
|
||||
pass # workaround incorrect use of this class for WordPiece
|
||||
elif (
|
||||
if (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
@ -647,16 +645,17 @@ def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
||||
|
||||
|
||||
class Tensor(ABC):
|
||||
ndarray: NDArray
|
||||
data_type: DataType
|
||||
|
||||
@abstractmethod
|
||||
def astype(self, data_type: DataType) -> Tensor: ...
|
||||
def astype(self, data_type: DataType) -> Self: ...
|
||||
@abstractmethod
|
||||
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
|
||||
def permute(self, n_head: int, n_head_kv: int) -> Self: ...
|
||||
@abstractmethod
|
||||
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
|
||||
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ...
|
||||
@abstractmethod
|
||||
def part(self, n_part: int) -> UnquantizedTensor: ...
|
||||
def part(self, n_part: int) -> Self: ...
|
||||
@abstractmethod
|
||||
def to_ggml(self) -> GGMLCompatibleTensor: ...
|
||||
|
||||
@ -673,13 +672,13 @@ class UnquantizedTensor(Tensor):
|
||||
self.ndarray = ndarray
|
||||
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
||||
|
||||
def astype(self, data_type: DataType) -> Tensor:
|
||||
def astype(self, data_type: DataType) -> UnquantizedTensor:
|
||||
dtype = data_type.dtype
|
||||
if self.data_type == DT_BF16:
|
||||
self.ndarray = bf16_to_fp32(self.ndarray)
|
||||
return UnquantizedTensor(self.ndarray.astype(dtype))
|
||||
|
||||
def to_ggml(self) -> UnquantizedTensor:
|
||||
def to_ggml(self) -> Self:
|
||||
return self
|
||||
|
||||
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
||||
|
@ -123,10 +123,10 @@ int main(int argc, char ** argv) {
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// add eos if not present
|
||||
// add SEP if not present
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_eos(model)) {
|
||||
inp.push_back(llama_token_eos(model));
|
||||
if (inp.empty() || inp.back() != llama_token_sep(model)) {
|
||||
inp.push_back(llama_token_sep(model));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -349,12 +349,13 @@ static void process_logits(
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
@ -239,6 +239,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
bool suff_rm_leading_spc = params.escape;
|
||||
@ -279,10 +280,10 @@ int main(int argc, char ** argv) {
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
|
@ -146,7 +146,6 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
|
||||
|
||||
std::string system_prompt, user_prompt;
|
||||
size_t image_pos = prompt.find("<image>");
|
||||
@ -180,7 +179,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, add_bos);
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
|
||||
|
@ -64,13 +64,10 @@ int main(int argc, char ** argv) {
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
// Tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
std::vector<llama_token> all;
|
||||
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
all = inp;
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
|
@ -28,10 +28,8 @@ int main(int argc, char ** argv){
|
||||
GGML_ASSERT(model != nullptr);
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
|
@ -34,11 +34,8 @@ int main(int argc, char ** argv){
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
|
@ -42,11 +42,8 @@ int main(int argc, char ** argv){
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
|
@ -246,6 +246,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
@ -255,7 +256,7 @@ int main(int argc, char ** argv) {
|
||||
if (params.chatml) {
|
||||
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
|
||||
}
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
} else {
|
||||
LOG("use session tokens\n");
|
||||
embd_inp = session_tokens;
|
||||
@ -277,10 +278,10 @@ int main(int argc, char ** argv) {
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
@ -339,14 +340,14 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
// chatml prefix & suffix
|
||||
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
|
||||
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true);
|
||||
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
|
||||
|
||||
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
|
||||
|
@ -315,10 +315,11 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
@ -454,6 +455,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
|
||||
std::ofstream logits_stream;
|
||||
if (!params.logits_file.empty()) {
|
||||
@ -470,7 +472,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
@ -771,9 +773,6 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
// The tasks should be randomized so the score stabilizes quickly.
|
||||
bool randomize_tasks = true;
|
||||
|
||||
@ -818,7 +817,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||
for (size_t j = 0; j < 4; j++) {
|
||||
hs_cur.ending[j] = prompt_lines[idx*6+2+j];
|
||||
hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos);
|
||||
hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
|
||||
}
|
||||
|
||||
// determine the common prefix of the endings
|
||||
@ -837,7 +836,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
|
||||
hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
|
||||
|
||||
//GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size());
|
||||
//GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
|
||||
|
||||
// Delete the selected random example from the prompt
|
||||
if (randomize_tasks) {
|
||||
@ -1110,12 +1109,9 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
for (auto & task : data) {
|
||||
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
|
||||
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
|
||||
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, true);
|
||||
|
||||
task.common_prefix = 0;
|
||||
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
|
||||
@ -1130,8 +1126,8 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
task.seq_tokens[0].size() - task.common_prefix +
|
||||
task.seq_tokens[1].size() - task.common_prefix;
|
||||
|
||||
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
|
||||
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
|
||||
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], true).size();
|
||||
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
@ -1322,7 +1318,7 @@ struct multiple_choice_task {
|
||||
std::vector<float> log_probs;
|
||||
};
|
||||
|
||||
static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) {
|
||||
static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
|
||||
if (task.question.empty() || task.mc1.answers.empty()) {
|
||||
if (log_error) {
|
||||
printf("%s: found bad task with empty question and/or answers\n", __func__);
|
||||
@ -1337,7 +1333,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos,
|
||||
}
|
||||
return false;
|
||||
}
|
||||
task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos));
|
||||
task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, true));
|
||||
}
|
||||
auto min_len = task.seq_tokens.front().size();
|
||||
for (auto& seq : task.seq_tokens) {
|
||||
@ -1436,9 +1432,6 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
n_task = params.multiple_choice_tasks;
|
||||
}
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
printf("%s: preparing task data", __func__);
|
||||
fflush(stdout);
|
||||
if (n_task > 500) {
|
||||
@ -1446,7 +1439,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
fflush(stdout);
|
||||
std::atomic<int> counter(0);
|
||||
std::atomic<int> n_bad(0);
|
||||
auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () {
|
||||
auto prepare = [&counter, &n_bad, &tasks, ctx] () {
|
||||
int num_tasks = tasks.size();
|
||||
int n_bad_local = 0;
|
||||
while (true) {
|
||||
@ -1457,7 +1450,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
}
|
||||
int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
|
||||
for (int i = first; i < last; ++i) {
|
||||
if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local;
|
||||
if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -1479,7 +1472,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
int i_task = 0;
|
||||
for (auto& task : tasks) {
|
||||
++i_task;
|
||||
if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) {
|
||||
if (!multiple_choice_prepare_one_task(ctx, task, true)) {
|
||||
return;
|
||||
}
|
||||
if (i_task%n_dot == 0) {
|
||||
@ -1715,6 +1708,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
|
||||
const int nv = 2*((n_vocab + 1)/2) + 4;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
|
||||
|
||||
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
|
||||
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
|
@ -689,6 +689,7 @@ struct server_context {
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
add_bos_token = llama_should_add_bos_token(model);
|
||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -758,7 +759,7 @@ struct server_context {
|
||||
metrics.init();
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const {
|
||||
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
|
||||
// TODO: currently, we tokenize using special tokens by default
|
||||
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
|
||||
// but it's better compared to completely ignoring ChatML and other chat templates
|
||||
@ -776,7 +777,7 @@ struct server_context {
|
||||
|
||||
std::vector<llama_token> p;
|
||||
if (first) {
|
||||
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
||||
p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
first = false;
|
||||
} else {
|
||||
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
||||
@ -793,7 +794,7 @@ struct server_context {
|
||||
}
|
||||
} else {
|
||||
auto s = json_prompt.template get<std::string>();
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
}
|
||||
|
||||
return prompt_tokens;
|
||||
@ -1058,7 +1059,7 @@ struct server_context {
|
||||
system_tokens.clear();
|
||||
|
||||
if (!system_prompt.empty()) {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
@ -1914,7 +1915,7 @@ struct server_context {
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
prompt_tokens = prefix_tokens;
|
||||
} else {
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
||||
}
|
||||
|
||||
slot.n_past = 0;
|
||||
|
@ -76,6 +76,28 @@ int main(int argc, char ** argv) {
|
||||
params.n_threads_batch = params.n_threads_batch_draft;
|
||||
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
fprintf(stderr, "%s: error: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (
|
||||
llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
|
||||
) {
|
||||
fprintf(stderr, "%s: error: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
@ -105,20 +127,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
|
||||
// Tokenize the prompt
|
||||
const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
|
||||
LOG("add_bos tgt: %d\n", add_bos_tgt);
|
||||
|
||||
const bool add_bos_dft = llama_should_add_bos_token(model_dft);
|
||||
LOG("add_bos dft: %d\n", add_bos_dft);
|
||||
|
||||
if (add_bos_tgt != add_bos_dft) {
|
||||
fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
@ -26,11 +26,9 @@ int main(int argc, char ** argv) {
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
|
||||
tokens = ::llama_tokenize(model, prompt, add_bos, true);
|
||||
tokens = ::llama_tokenize(model, prompt, true, true);
|
||||
|
||||
for (int i = 0; i < (int) tokens.size(); i++) {
|
||||
if (printing_ids) {
|
||||
|
167
llama.cpp
167
llama.cpp
@ -318,6 +318,8 @@ enum llm_kv {
|
||||
LLM_KV_TOKENIZER_UNK_ID,
|
||||
LLM_KV_TOKENIZER_SEP_ID,
|
||||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_CLS_ID,
|
||||
LLM_KV_TOKENIZER_MASK_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||||
@ -388,6 +390,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
|
||||
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
|
||||
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
|
||||
{ LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
|
||||
{ LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
|
||||
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
|
||||
@ -2018,11 +2022,13 @@ struct llama_vocab {
|
||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||
|
||||
// default LLaMA special tokens
|
||||
id special_bos_id = 1;
|
||||
id special_eos_id = 2;
|
||||
id special_unk_id = 0;
|
||||
id special_sep_id = -1;
|
||||
id special_pad_id = -1;
|
||||
id special_bos_id = 1;
|
||||
id special_eos_id = 2;
|
||||
id special_unk_id = 0;
|
||||
id special_sep_id = -1;
|
||||
id special_pad_id = -1;
|
||||
id special_cls_id = -1;
|
||||
id special_mask_id = -1;
|
||||
|
||||
int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
@ -3978,7 +3984,9 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// TODO: This should probably be in llama.h
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(
|
||||
const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
|
||||
);
|
||||
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
|
||||
|
||||
static void llm_load_vocab(
|
||||
@ -4000,23 +4008,27 @@ static void llm_load_vocab(
|
||||
vocab.type = LLAMA_VOCAB_TYPE_NONE;
|
||||
|
||||
// default special tokens
|
||||
vocab.special_bos_id = -1;
|
||||
vocab.special_eos_id = -1;
|
||||
vocab.special_unk_id = -1;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.linefeed_id = -1;
|
||||
vocab.special_bos_id = -1;
|
||||
vocab.special_eos_id = -1;
|
||||
vocab.special_unk_id = -1;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_cls_id = -1;
|
||||
vocab.special_mask_id = -1;
|
||||
vocab.linefeed_id = -1;
|
||||
|
||||
return;
|
||||
} else if (tokenizer_name == "llama") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// default special tokens
|
||||
vocab.special_bos_id = 1;
|
||||
vocab.special_eos_id = 2;
|
||||
vocab.special_unk_id = 0;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_bos_id = 1;
|
||||
vocab.special_eos_id = 2;
|
||||
vocab.special_unk_id = 0;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_cls_id = -1;
|
||||
vocab.special_mask_id = -1;
|
||||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
@ -4051,20 +4063,24 @@ static void llm_load_vocab(
|
||||
}
|
||||
|
||||
// default special tokens
|
||||
vocab.special_bos_id = 11;
|
||||
vocab.special_eos_id = 11;
|
||||
vocab.special_unk_id = -1;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_bos_id = 11;
|
||||
vocab.special_eos_id = 11;
|
||||
vocab.special_unk_id = -1;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_cls_id = -1;
|
||||
vocab.special_mask_id = -1;
|
||||
} else if (tokenizer_name == "bert") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_WPM;
|
||||
|
||||
// default special tokens
|
||||
vocab.special_bos_id = 101;
|
||||
vocab.special_eos_id = 102;
|
||||
vocab.special_unk_id = 100;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
vocab.special_bos_id = -1;
|
||||
vocab.special_eos_id = -1;
|
||||
vocab.special_unk_id = 100;
|
||||
vocab.special_sep_id = 102;
|
||||
vocab.special_pad_id = 0;
|
||||
vocab.special_cls_id = 101;
|
||||
vocab.special_mask_id = 103;
|
||||
vocab.add_space_prefix = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
|
||||
@ -4127,11 +4143,13 @@ static void llm_load_vocab(
|
||||
// special tokens
|
||||
{
|
||||
const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
|
||||
{ LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
|
||||
{ LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
|
||||
{ LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
|
||||
{ LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
|
||||
{ LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
|
||||
{ LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
|
||||
{ LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
|
||||
{ LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
|
||||
{ LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
|
||||
{ LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
|
||||
{ LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
|
||||
{ LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
|
||||
};
|
||||
for (const auto & it : special_token_types) {
|
||||
const std::string & key = kv(std::get<0>(it));
|
||||
@ -4323,12 +4341,14 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
|
||||
|
||||
// special tokens
|
||||
if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
|
||||
if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
|
||||
if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
|
||||
if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
|
||||
if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
|
||||
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
|
||||
if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
|
||||
if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
|
||||
if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
|
||||
if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
|
||||
if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
|
||||
if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
|
||||
if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
|
||||
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
|
||||
}
|
||||
|
||||
// Returns false if cancelled by progress_callback
|
||||
@ -11358,9 +11378,6 @@ struct llm_tokenizer_wpm {
|
||||
output.push_back(vocab.special_unk_id);
|
||||
}
|
||||
}
|
||||
|
||||
// append eos token
|
||||
output.push_back(vocab.special_eos_id);
|
||||
}
|
||||
|
||||
std::vector<std::string> preprocess(const std::string & text) {
|
||||
@ -11565,30 +11582,28 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
|
||||
std::vector<llama_vocab::id> output;
|
||||
|
||||
// OG tokenizer behavior:
|
||||
//
|
||||
// tokenizer.encode('', add_bos=True) returns [1]
|
||||
// tokenizer.encode('', add_bos=False) returns []
|
||||
|
||||
if (bos && vocab.special_bos_id != -1) {
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
if (raw_text.empty()) {
|
||||
return output;
|
||||
}
|
||||
|
||||
std::forward_list<fragment_buffer_variant> fragment_buffer;
|
||||
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
||||
|
||||
if (special) tokenizer_st_partition(vocab, fragment_buffer);
|
||||
if (!raw_text.empty()) {
|
||||
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
|
||||
if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
|
||||
}
|
||||
|
||||
switch (vocab.type) {
|
||||
case LLAMA_VOCAB_TYPE_SPM:
|
||||
{
|
||||
// OG tokenizer behavior:
|
||||
//
|
||||
// tokenizer.encode('', add_special_tokens=True) returns [1]
|
||||
// tokenizer.encode('', add_special_tokens=False) returns []
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
// without adding this leading whitespace, we do not get the same results as the original tokenizer
|
||||
@ -11614,9 +11629,19 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
output.push_back(fragment.token);
|
||||
}
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_eos == 1) {
|
||||
GGML_ASSERT(vocab.special_eos_id != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
}
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_BPE:
|
||||
{
|
||||
if (add_special && vocab.special_add_bos == 1) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
@ -11630,9 +11655,16 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
output.push_back(fragment.token);
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(vocab.special_add_eos != 1);
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_WPM:
|
||||
{
|
||||
if (add_special) {
|
||||
GGML_ASSERT(vocab.special_cls_id != -1);
|
||||
output.push_back(vocab.special_cls_id);
|
||||
}
|
||||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
@ -11646,6 +11678,11 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
output.push_back(fragment.token);
|
||||
}
|
||||
}
|
||||
|
||||
if (add_special) {
|
||||
GGML_ASSERT(vocab.special_sep_id != -1);
|
||||
output.push_back(vocab.special_sep_id);
|
||||
}
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_NONE:
|
||||
GGML_ASSERT(false);
|
||||
@ -16104,6 +16141,14 @@ llama_token llama_token_eos(const struct llama_model * model) {
|
||||
return model->vocab.special_eos_id;
|
||||
}
|
||||
|
||||
llama_token llama_token_cls(const struct llama_model * model) {
|
||||
return model->vocab.special_cls_id;
|
||||
}
|
||||
|
||||
llama_token llama_token_sep(const struct llama_model * model) {
|
||||
return model->vocab.special_sep_id;
|
||||
}
|
||||
|
||||
llama_token llama_token_nl(const struct llama_model * model) {
|
||||
return model->vocab.linefeed_id;
|
||||
}
|
||||
@ -16138,9 +16183,9 @@ int32_t llama_tokenize(
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_bos,
|
||||
bool special) {
|
||||
auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
|
||||
|
||||
if (n_tokens_max < (int) res.size()) {
|
||||
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
||||
|
10
llama.h
10
llama.h
@ -786,6 +786,8 @@ extern "C" {
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
|
||||
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
@ -808,16 +810,16 @@ extern "C" {
|
||||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||||
/// @return Returns the number of tokens on success, no more than n_tokens_max
|
||||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||||
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||||
/// Does not insert a leading space.
|
||||
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
|
||||
/// as plaintext. Does not insert a leading space.
|
||||
LLAMA_API int32_t llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
int32_t text_len,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens_max,
|
||||
bool add_bos,
|
||||
bool special);
|
||||
bool add_special,
|
||||
bool parse_special);
|
||||
|
||||
// Token Id -> Piece.
|
||||
// Uses the vocabulary in the provided context.
|
||||
|
Loading…
Reference in New Issue
Block a user