fix conflicts

This commit is contained in:
M. Yusuf Sarıgöz 2023-08-13 13:35:40 +03:00
commit 1d60468eee
2 changed files with 220 additions and 86 deletions

View File

@ -1,4 +1,4 @@
# Quick and dirty HF gptneox--> gguf conversion
# HF gptneox--> gguf conversion
import gguf
import gguf_tensor_map as tmap
@ -9,7 +9,8 @@ import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from transformers import AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
@ -33,6 +34,15 @@ def bytes_to_unicode():
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
@ -70,9 +80,8 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] )
sys.exit()
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
# get number of model parts
num_parts = count_model_parts(dir_model)
gguf_writer = gguf.GGUFWriter.open(fname_out)
@ -183,13 +192,30 @@ tensor_map = tmap.get_tensor_map(block_count)
# tensor info
print("gguf: get tensor metadata")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
@ -202,19 +228,23 @@ for name in list_vars.keys():
n_dims = len(data.shape)
data_dtype = data.dtype
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
if data.dtype != np.float16 and data.dtype != np.float32:
# convert any unsupported data types to float32
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data_dtype = np.float32
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data.dtype == np.float16 and n_dims == 1:
data_dtype = np.float32
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data_dtype = np.float16
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
@ -225,23 +255,58 @@ gguf_writer.write_ti_data_to_file()
# tensor data
print("gguf: convert and write tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
if data_dtype != np.float16 and data_dtype != np.float32:
# convert any unsupported data types to float32
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data = data.astype(np.float32)
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data)
gguf_writer.close()

View File

@ -1,4 +1,4 @@
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
# HF llama --> gguf conversion, GQA/70b not supported
import gguf
import gguf_tensor_map as tmap
@ -9,7 +9,7 @@ import json
import numpy as np
from typing import Any, List
from pathlib import Path
from transformers import AutoModelForCausalLM
import torch
from sentencepiece import SentencePieceProcessor
@ -23,6 +23,15 @@ def permute(weights: NDArray, n_head: int) -> NDArray:
.swapaxes(1, 2)
.reshape(weights.shape))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
@ -61,8 +70,8 @@ if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
# get number of model parts
num_parts = count_model_parts(dir_model)
gguf_writer = gguf.GGUFWriter.open(fname_out)
@ -170,16 +179,33 @@ tensor_map = tmap.get_tensor_map(block_count)
# tensor info
print("gguf: get tensor metadata")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data, head_count)
data = permute(data,head_count)
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
@ -187,19 +213,22 @@ for name in list_vars.keys():
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
if data.dtype != np.float16 and data.dtype != np.float32:
# convert any unsupported data types to float32
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data_dtype = np.float32
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data_dtype = np.float32
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data_dtype = np.float16
data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4
@ -217,27 +246,67 @@ gguf_writer.write_ti_data_to_file()
# tensor data
print("gguf: convert and write tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '"+ part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
<<<<<<< HEAD
n_dims = len(data.shape)
data_dtype = data.dtype
=======
old_dtype = data.dtype
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
>>>>>>> 17800cd80fec468411481dc34a51d42a936442f1
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data, head_count)
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print( "Can not map tensor '" + name + "'" )
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
if data_dtype != np.float16 and data_dtype != np.float32:
# convert any unsupported data types to float32
# if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16:
data = data.astype(np.float32)
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data)
gguf_writer.close()