mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 14:28:58 +01:00
PR #4766
This commit is contained in:
parent
3773e1afe7
commit
1eb8804c18
@ -543,9 +543,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
@ -554,9 +553,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#else
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
@ -565,25 +563,44 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.main_gpu = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
|
||||
#endif
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--split-mode" || arg == "-sm") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string arg_next = argv[i];
|
||||
if (arg_next == "none") {
|
||||
params.split_mode = LLAMA_SPLIT_NONE;
|
||||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
params.split_mode = LLAMA_SPLIT_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--tensor-split" || arg == "-ts") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
std::string arg_next = argv[i];
|
||||
|
||||
// split string by , and /
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||
@ -591,14 +608,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.mul_mat_q = false;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
@ -909,14 +920,15 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
printf(" -nommq, --no-mul-mat-q\n");
|
||||
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
||||
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
#endif
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
|
||||
@ -1033,6 +1045,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
|
@ -59,6 +59,7 @@ struct gpt_params {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
|
@ -88,7 +88,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
|
12
ggml-alloc.c
12
ggml-alloc.c
@ -229,6 +229,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
|
||||
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
||||
} else {
|
||||
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
|
||||
ggml_backend_buffer_reset(alloc->buffer);
|
||||
}
|
||||
}
|
||||
|
||||
@ -779,10 +780,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
|
||||
|
||||
if (nbytes == 0) {
|
||||
// all the tensors in the context are already allocated
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
|
||||
#endif
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
|
||||
if (buffer == NULL) {
|
||||
// failed to allocate buffer
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
|
||||
#endif
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
|
@ -16,9 +16,10 @@ extern "C" {
|
||||
typedef void * ggml_backend_buffer_type_context_t;
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*get_name) (ggml_backend_buffer_type_t buft);
|
||||
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||
// check if tensor data is in host memory
|
||||
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
||||
@ -34,16 +35,17 @@ extern "C" {
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
const char * (*get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
@ -51,6 +53,7 @@ extern "C" {
|
||||
ggml_backend_buffer_type_t buft;
|
||||
ggml_backend_buffer_context_t context;
|
||||
size_t size;
|
||||
enum ggml_backend_buffer_usage usage;
|
||||
};
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
@ -79,13 +82,13 @@ extern "C" {
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
// (optional) asynchroneous tensor copy
|
||||
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_from_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to_async) (ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
void (*synchronize)(ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
|
477
ggml-backend.c
477
ggml-backend.c
@ -15,6 +15,10 @@
|
||||
|
||||
// backend buffer type
|
||||
|
||||
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
return buft->iface.alloc_buffer(buft, size);
|
||||
}
|
||||
@ -58,11 +62,16 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
/* .buft = */ buft,
|
||||
/* .context = */ context,
|
||||
/* .size = */ size,
|
||||
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
|
||||
};
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name(buffer);
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
if (buffer == NULL) {
|
||||
return;
|
||||
@ -94,11 +103,11 @@ void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_t
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
|
||||
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
|
||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@ -106,13 +115,23 @@ void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
}
|
||||
|
||||
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer));
|
||||
return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
|
||||
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||
buffer->usage = usage;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
||||
return buffer->buft;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
|
||||
if (buffer->iface.reset) {
|
||||
buffer->iface.reset(buffer);
|
||||
}
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
@ -392,6 +411,12 @@ ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
|
||||
|
||||
// backend CPU
|
||||
|
||||
static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)buffer->context;
|
||||
}
|
||||
@ -412,13 +437,13 @@ static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, con
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
@ -429,6 +454,7 @@ static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_buffer_name,
|
||||
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
@ -437,10 +463,12 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
// for buffers from ptr, free is not called
|
||||
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .get_name = */ ggml_backend_cpu_buffer_name,
|
||||
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
||||
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
@ -449,10 +477,17 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
||||
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||
|
||||
static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||
@ -483,6 +518,7 @@ static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
@ -501,6 +537,18 @@ ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
||||
|
||||
#include <hbwmalloc.h>
|
||||
|
||||
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_HBM";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
|
||||
return "CPU_HBM";
|
||||
|
||||
GGML_UNUSED(buf);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
hbw_free(buffer->context);
|
||||
}
|
||||
@ -514,17 +562,18 @@ static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// FIXME: this is a hack to avoid having to implement a new buffer type
|
||||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
buffer->buft = buft;
|
||||
buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
|
||||
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() {
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
@ -568,7 +617,7 @@ struct ggml_backend_plan_cpu {
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
|
||||
@ -661,7 +710,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
}
|
||||
|
||||
bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend->iface.get_name == ggml_backend_cpu_name;
|
||||
return backend && backend->iface.get_name == ggml_backend_cpu_name;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
@ -685,7 +734,7 @@ static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user
|
||||
|
||||
// scheduler
|
||||
|
||||
#define GGML_MAX_BACKENDS 4
|
||||
#define GGML_MAX_BACKENDS 16
|
||||
#define GGML_MAX_SPLITS 256
|
||||
#define GGML_MAX_SPLIT_INPUTS 16
|
||||
|
||||
@ -695,9 +744,16 @@ struct ggml_backend_sched_split {
|
||||
int i_end;
|
||||
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
|
||||
int n_inputs;
|
||||
// graph view of this split
|
||||
struct ggml_cgraph graph;
|
||||
};
|
||||
|
||||
// TODO: group all the hash values into a single struct for clarity
|
||||
//struct sched_hash_value {
|
||||
// ggml_tallocr_t tallocr;
|
||||
// struct ggml_tensor * copies[GGML_MAX_BACKENDS];
|
||||
//};
|
||||
|
||||
struct ggml_backend_sched {
|
||||
int n_backends;
|
||||
ggml_backend_t backends[GGML_MAX_BACKENDS];
|
||||
@ -705,11 +761,15 @@ struct ggml_backend_sched {
|
||||
|
||||
ggml_gallocr_t galloc;
|
||||
|
||||
// hash keys of the nodes in the graph
|
||||
struct ggml_hash_set hash_set;
|
||||
ggml_tallocr_t * node_talloc; // [hash_set.size]
|
||||
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
|
||||
// hash values (arrays of [hash_set.size])
|
||||
ggml_tallocr_t * node_talloc; // tallocr assigned to each node (indirectly this is the backend)
|
||||
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // copies of each node for each destination backend
|
||||
|
||||
// copy of the graph with modified inputs
|
||||
struct ggml_cgraph * graph;
|
||||
|
||||
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
|
||||
int n_splits;
|
||||
|
||||
@ -777,7 +837,7 @@ static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_talloc
|
||||
}
|
||||
|
||||
#if 0
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
||||
#define GET_CAUSE(node) causes[hash_id(node)]
|
||||
#else
|
||||
@ -790,6 +850,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
||||
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
|
||||
// ie. kv cache updates
|
||||
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
|
||||
|
||||
// dst
|
||||
ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
|
||||
if (cur_backend != NULL) {
|
||||
@ -804,7 +865,6 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
||||
}
|
||||
|
||||
// src
|
||||
int cur_prio = INT_MAX;
|
||||
size_t cur_size = 0;
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
@ -812,16 +872,20 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
|
||||
if (src_backend != NULL) {
|
||||
int src_prio = sched_backend_prio(sched, src_backend);
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_prio < cur_prio && src_size >= cur_size) {
|
||||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
cur_backend = src_backend;
|
||||
SET_CAUSE(node, "1.src%d", i);
|
||||
}
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
// operations with weights are always on the same backend as the weights
|
||||
cur_backend = src_backend;
|
||||
SET_CAUSE(node, "1.wgt%d", i);
|
||||
break;
|
||||
}
|
||||
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_size >= cur_size) {
|
||||
cur_size = src_size;
|
||||
cur_backend = src_backend;
|
||||
SET_CAUSE(node, "1.src%d", i);
|
||||
}
|
||||
}
|
||||
return cur_backend;
|
||||
@ -857,7 +921,7 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
@ -866,7 +930,7 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
|
||||
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
|
||||
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
|
||||
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
@ -882,14 +946,16 @@ static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, co
|
||||
return dup;
|
||||
}
|
||||
|
||||
|
||||
//#define DEBUG_PASS1
|
||||
//#define DEBUG_PASS2
|
||||
//#define DEBUG_PASS3
|
||||
//#define DEBUG_PASS4
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
// TODO: merge passes
|
||||
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset state
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
|
||||
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
|
||||
// reset splits
|
||||
sched->n_splits = 0;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
@ -898,11 +964,13 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
/* .no_alloc = */ true
|
||||
};
|
||||
|
||||
if (sched->ctx != NULL) {
|
||||
ggml_free(sched->ctx);
|
||||
}
|
||||
ggml_free(sched->ctx);
|
||||
|
||||
sched->ctx = ggml_init(params);
|
||||
if (sched->ctx == NULL) {
|
||||
fprintf(stderr, "%s: failed to initialize context\n", __func__);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// pass 1: assign backends to ops with allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
@ -931,45 +999,91 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
|
||||
}
|
||||
}
|
||||
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#ifdef DEBUG_PASS1
|
||||
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 2: assign backends to ops from current assignments
|
||||
// TODO:
|
||||
// - reuse sched_backend_from_cur
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr == NULL) {
|
||||
int cur_prio = INT_MAX;
|
||||
size_t cur_size = 0;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != NULL) {
|
||||
int src_prio = sched_allocr_prio(sched, src_allocr);
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_prio < cur_prio && src_size >= cur_size) {
|
||||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
node_allocr = src_allocr;
|
||||
SET_CAUSE(node, "2.src%d", j);
|
||||
}
|
||||
}
|
||||
// start from the end and assign the same backend to previous ops
|
||||
|
||||
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu
|
||||
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
|
||||
|
||||
// pass 2.1 expand gpu up
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
node_allocr(node) = node_allocr;
|
||||
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
|
||||
// skip cpu
|
||||
cur_allocr = NULL;
|
||||
} else {
|
||||
cur_allocr = node_allocr;
|
||||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
|
||||
// pass 3: assign backends to remaining src from dst (should only be leafs)
|
||||
// pass 2.2 expand gpu down
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
|
||||
// skip cpu
|
||||
cur_allocr = NULL;
|
||||
} else {
|
||||
cur_allocr = node_allocr;
|
||||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pass 2.3 expand rest up
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
cur_allocr = node_allocr;
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
SET_CAUSE(node, "2.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS2
|
||||
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 3: assign backends to remaining src from dst and view_src
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
ggml_tallocr_t cur_allocr = node_allocr(node);
|
||||
if (ggml_is_view_op(node->op) && cur_allocr == NULL) {
|
||||
cur_allocr = node_allocr(node) = node_allocr(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
@ -977,81 +1091,100 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr == NULL) {
|
||||
node_allocr(src) = node_allocr;
|
||||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
node_allocr(src) = node_allocr(src->view_src);
|
||||
} else {
|
||||
node_allocr(src) = cur_allocr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#ifdef DEBUG_PASS3
|
||||
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
// TODO:
|
||||
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
|
||||
// find first backend
|
||||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (node->view_src == NULL) {
|
||||
sched->splits[0].tallocr = node_allocr(node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
sched->splits[0].i_start = 0;
|
||||
sched->splits[0].n_inputs = 0;
|
||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
||||
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
|
||||
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
|
||||
if (node_allocr != cur_allocr) {
|
||||
sched->splits[cur_split].i_end = i;
|
||||
cur_split++;
|
||||
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
|
||||
sched->splits[cur_split].tallocr = node_allocr;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
}
|
||||
|
||||
// find inputs that are not on the same backend
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
{
|
||||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (node->view_src == NULL) {
|
||||
sched->splits[0].tallocr = node_allocr(node);
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr) {
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
|
||||
}
|
||||
sched->splits[0].i_start = 0;
|
||||
sched->splits[0].n_inputs = 0;
|
||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
||||
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
|
||||
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
// create copies
|
||||
size_t id = hash_id(src);
|
||||
if (sched->node_copies[id][cur_backend_id] == NULL) {
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
|
||||
if (node_allocr != cur_allocr) {
|
||||
sched->splits[cur_split].i_end = i;
|
||||
cur_split++;
|
||||
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
|
||||
sched->splits[cur_split].tallocr = node_allocr;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
}
|
||||
|
||||
// find inputs that are not on the same backend
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr) {
|
||||
// check if the input is already in the split
|
||||
bool found = false;
|
||||
for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) {
|
||||
if (sched->splits[cur_split].inputs[k] == src) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
//printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr)));
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
|
||||
}
|
||||
|
||||
// create a copy of the input in the split's backend
|
||||
size_t id = hash_id(src);
|
||||
if (sched->node_copies[id][cur_backend_id] == NULL) {
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
}
|
||||
}
|
||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
||||
sched->n_splits = cur_split + 1;
|
||||
}
|
||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
||||
sched->n_splits = cur_split + 1;
|
||||
#ifdef DEBUG_PASS4
|
||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
|
||||
|
||||
#if 1
|
||||
#ifndef NDEBUG
|
||||
// sanity check: all sources should have the same backend as the node
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
@ -1059,6 +1192,11 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
if (node_allocr == NULL) {
|
||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
||||
}
|
||||
if (node->view_src != NULL && node_allocr != node_allocr(node->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
|
||||
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
||||
node->view_src->name, node_allocr(node->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(node->view_src))) : "NULL");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
@ -1070,8 +1208,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
||||
j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
|
||||
}
|
||||
if (src->view_src != NULL && src_allocr != node_allocr(src->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
|
||||
src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL",
|
||||
src->view_src->name, node_allocr(src->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(src->view_src))) : "NULL");
|
||||
}
|
||||
}
|
||||
}
|
||||
fflush(stderr);
|
||||
#endif
|
||||
|
||||
// create copies of the graph for each split
|
||||
@ -1085,6 +1229,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
|
||||
// add a dependency to the input source so that it is not freed before the copy is done
|
||||
input_cpy->src[0] = input;
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
|
||||
}
|
||||
@ -1121,19 +1266,20 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
|
||||
if (input->buffer == NULL) {
|
||||
GGML_ASSERT(false);
|
||||
if (input->view_src == NULL) {
|
||||
fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
|
||||
exit(1);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
// FIXME: may need to use the sched buffer instead
|
||||
ggml_backend_view_init(input->view_src->buffer, input);
|
||||
}
|
||||
if (input_cpy->buffer == NULL) {
|
||||
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
|
||||
exit(1);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
//GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
|
||||
//GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
||||
// TODO: avoid this copy if it was already copied in a previous split, and the input didn't change
|
||||
// this is important to avoid copying constants such as KQ_mask and inp_pos multiple times
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
@ -1168,13 +1314,23 @@ static void sched_reset(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_tallocr_reset(sched->tallocs[i]);
|
||||
}
|
||||
// reset state for the next run
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
|
||||
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
|
||||
}
|
||||
|
||||
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
|
||||
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends, size_t graph_size) {
|
||||
GGML_ASSERT(n_backends > 0);
|
||||
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
|
||||
|
||||
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
|
||||
memset(sched, 0, sizeof(struct ggml_backend_sched));
|
||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
sched->node_talloc = calloc(sizeof(sched->node_talloc[0]) * sched->hash_set.size, 1);
|
||||
sched->node_copies = calloc(sizeof(sched->node_copies[0]) * sched->hash_set.size, 1);
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
@ -1199,6 +1355,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
ggml_tallocr_free(sched->tallocs[i]);
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
ggml_free(sched->ctx);
|
||||
free(sched->hash_set.keys);
|
||||
free(sched->node_talloc);
|
||||
free(sched->node_copies);
|
||||
@ -1206,12 +1363,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
// initialize hash tables
|
||||
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
|
||||
sched->hash_set.size = hash_size;
|
||||
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
|
||||
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
|
||||
GGML_ASSERT(ggml_tallocr_is_measure(sched->tallocs[0])); // can only be initialized once
|
||||
|
||||
sched_split_graph(sched, measure_graph);
|
||||
sched_alloc_splits(sched);
|
||||
@ -1227,7 +1379,7 @@ void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgr
|
||||
}
|
||||
|
||||
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
|
||||
sched_split_graph(sched, graph);
|
||||
sched_alloc_splits(sched);
|
||||
@ -1235,13 +1387,19 @@ void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cg
|
||||
sched_reset(sched);
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||
return sched->n_splits;
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
return sched->tallocs[backend_index];
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
|
||||
}
|
||||
|
||||
@ -1252,9 +1410,10 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
|
||||
}
|
||||
|
||||
// utils
|
||||
|
||||
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
//GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized
|
||||
//GGML_ASSERT(tensor->data == NULL); // views of pre-allocated tensors may have the data set in ggml_new_tensor, but still need to be initialized by the backend
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
GGML_ASSERT(tensor->view_src->data != NULL);
|
||||
@ -1320,6 +1479,7 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor
|
||||
|
||||
struct ggml_tensor * dst = node_copies[id];
|
||||
if (dst->view_src != NULL) {
|
||||
graph_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
||||
ggml_backend_view_init(dst->view_src->buffer, dst);
|
||||
}
|
||||
else {
|
||||
@ -1353,6 +1513,21 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
struct ggml_context * ctx_allocated = ggml_init(params);
|
||||
struct ggml_context * ctx_unallocated = ggml_init(params);
|
||||
|
||||
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
|
||||
fprintf(stderr, "failed to allocate context for graph copy\n");
|
||||
free(hash_set.keys);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
ggml_free(ctx_allocated);
|
||||
ggml_free(ctx_unallocated);
|
||||
return (struct ggml_backend_graph_copy) {
|
||||
/* .buffer = */ NULL,
|
||||
/* .ctx_allocated = */ NULL,
|
||||
/* .ctx_unallocated = */ NULL,
|
||||
/* .graph = */ NULL,
|
||||
};
|
||||
}
|
||||
|
||||
// dup nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
@ -1361,6 +1536,20 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
|
||||
// allocate nodes
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
|
||||
if (buffer == NULL) {
|
||||
fprintf(stderr, "failed to allocate buffer for graph copy\n");
|
||||
free(hash_set.keys);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
ggml_free(ctx_allocated);
|
||||
ggml_free(ctx_unallocated);
|
||||
return (struct ggml_backend_graph_copy) {
|
||||
/* .buffer = */ NULL,
|
||||
/* .ctx_allocated = */ NULL,
|
||||
/* .ctx_unallocated = */ NULL,
|
||||
/* .graph = */ NULL,
|
||||
};
|
||||
}
|
||||
|
||||
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
|
||||
|
||||
@ -1397,8 +1586,12 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
||||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * g1 = graph;
|
||||
struct ggml_cgraph * g2 = copy.graph;
|
||||
|
||||
@ -1428,4 +1621,6 @@ void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
}
|
||||
|
||||
ggml_backend_graph_copy_free(copy);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -17,22 +17,32 @@ extern "C" {
|
||||
//
|
||||
|
||||
// buffer type
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
|
||||
// buffer
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
|
||||
enum ggml_backend_buffer_usage {
|
||||
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
||||
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
|
||||
//
|
||||
// Backend
|
||||
@ -140,24 +150,23 @@ extern "C" {
|
||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||
|
||||
// Initialize a backend scheduler
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
|
||||
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends, size_t graph_size);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
|
||||
// Allocate a graph on the backend scheduler
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API void ggml_backend_sched_graph_compute(
|
||||
ggml_backend_sched_t sched,
|
||||
struct ggml_cgraph * graph);
|
||||
|
||||
|
||||
//
|
||||
// Utils
|
||||
//
|
||||
@ -176,7 +185,7 @@ extern "C" {
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
|
828
ggml-cuda.cu
828
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
26
ggml-cuda.h
26
ggml-cuda.h
@ -27,22 +27,6 @@ GGML_API void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
||||
GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_set_main_device(int main_device);
|
||||
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
GGML_API void ggml_cuda_free_scratch(void);
|
||||
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API int ggml_cuda_get_device_count(void);
|
||||
@ -52,13 +36,17 @@ GGML_API void ggml_cuda_get_device_description(int device, char * description,
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -228,6 +228,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
||||
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
|
||||
|
||||
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
||||
|
||||
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
||||
|
39
ggml-metal.m
39
ggml-metal.m
@ -2482,10 +2482,10 @@ static void ggml_backend_metal_free_device(void) {
|
||||
}
|
||||
}
|
||||
|
||||
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||
static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
return "Metal";
|
||||
|
||||
return ctx->all_data;
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@ -2503,6 +2503,12 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||
|
||||
return ctx->all_data;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
@ -2515,13 +2521,13 @@ static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, c
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(buffer);
|
||||
@ -2534,6 +2540,7 @@ static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_get_name,
|
||||
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
||||
/* .init_tensor = */ NULL,
|
||||
@ -2542,10 +2549,17 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
||||
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
|
||||
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
|
||||
/* .clear = */ ggml_backend_metal_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
// default buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
||||
|
||||
@ -2618,6 +2632,7 @@ static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t bu
|
||||
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
@ -2641,6 +2656,14 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
ctx->n_buffers = 0;
|
||||
|
||||
const size_t size_page = sysconf(_SC_PAGESIZE);
|
||||
|
||||
// page-align the data ptr
|
||||
{
|
||||
const uintptr_t offs = (uintptr_t) data % size_page;
|
||||
data = (void *) ((char *) data - offs);
|
||||
size += offs;
|
||||
}
|
||||
|
||||
size_t size_aligned = size;
|
||||
if ((size_aligned % size_page) != 0) {
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
@ -2741,7 +2764,7 @@ static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i metal_backend_i = {
|
||||
static struct ggml_backend_i ggml_backend_metal_i = {
|
||||
/* .get_name = */ ggml_backend_metal_name,
|
||||
/* .free = */ ggml_backend_metal_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
|
||||
@ -2767,7 +2790,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
||||
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
||||
|
||||
*metal_backend = (struct ggml_backend) {
|
||||
/* .interface = */ metal_backend_i,
|
||||
/* .interface = */ ggml_backend_metal_i,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
@ -2775,7 +2798,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
||||
}
|
||||
|
||||
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
||||
return backend->iface.get_name == ggml_backend_metal_name;
|
||||
return backend && backend->iface.get_name == ggml_backend_metal_name;
|
||||
}
|
||||
|
||||
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||
|
335
ggml-opencl.cpp
335
ggml-opencl.cpp
@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-opencl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
@ -10,7 +11,7 @@
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#define CL_TARGET_OPENCL_VERSION 110
|
||||
#define CL_TARGET_OPENCL_VERSION 120
|
||||
#include <clblast.h>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
@ -929,6 +930,11 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co
|
||||
}
|
||||
|
||||
void ggml_cl_init(void) {
|
||||
static bool initialized = false;
|
||||
if (initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
cl_int err;
|
||||
|
||||
struct cl_device;
|
||||
@ -1483,8 +1489,8 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
|
||||
size_t x_offset = 0;
|
||||
|
||||
@ -1501,7 +1507,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
}
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
@ -1522,8 +1530,10 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1532,8 +1542,12 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
}
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
if (src1->backend != GGML_BACKEND_GPU) {
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
}
|
||||
if (dst->backend != GGML_BACKEND_GPU) {
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||
@ -1598,6 +1612,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||
}
|
||||
|
||||
// FIXME: convert on device
|
||||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
@ -1643,11 +1659,13 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
}
|
||||
|
||||
// copy dst to host, then convert to float
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
} else {
|
||||
// FIXME: convert dst to fp32 on device
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1801,7 +1819,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
}
|
||||
|
||||
|
||||
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
@ -1895,3 +1913,292 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||
tensor->extra = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
}
|
||||
|
||||
// ggml-backend
|
||||
|
||||
// buffer
|
||||
|
||||
struct ggml_backend_opencl_buffer_context {
|
||||
~ggml_backend_opencl_buffer_context() {
|
||||
if (buffer) {
|
||||
clReleaseMemObject(buffer);
|
||||
}
|
||||
for (auto * sub_buffer : sub_buffers) {
|
||||
clReleaseMemObject(sub_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
cl_mem buffer;
|
||||
std::vector<cl_mem> sub_buffers;
|
||||
};
|
||||
|
||||
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
|
||||
|
||||
static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
return "OpenCL";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return cl_ptr_base;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||||
tensor->extra = tensor->view_src->extra;
|
||||
} else {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
|
||||
cl_int err;
|
||||
cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
||||
CL_CHECK(err);
|
||||
ctx->sub_buffers.push_back(sub_buffer);
|
||||
tensor->extra = sub_buffer;
|
||||
}
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
||||
CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
|
||||
CL_CHECK(clFinish(queue));
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
for (auto * sub_buffer : ctx->sub_buffers) {
|
||||
clReleaseMemObject(sub_buffer);
|
||||
}
|
||||
ctx->sub_buffers.clear();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
|
||||
/* .get_name = */ ggml_backend_opencl_buffer_get_name,
|
||||
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
|
||||
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
|
||||
/* .cpy_tensor_from = */ NULL,
|
||||
/* .cpy_tensor_to = */ NULL,
|
||||
/* .clear = */ ggml_backend_opencl_buffer_clear,
|
||||
/* .reset = */ ggml_backend_opencl_buffer_reset,
|
||||
};
|
||||
|
||||
// buffer type
|
||||
|
||||
static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
|
||||
return "OpenCL";
|
||||
|
||||
GGML_UNUSED(buffer_type);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
|
||||
ggml_cl_init();
|
||||
|
||||
cl_int err;
|
||||
cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
|
||||
|
||||
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
|
||||
// FIXME: not thread safe, device may not be initialized yet
|
||||
static cl_uint alignment = -1;
|
||||
if (alignment == (cl_uint)-1) {
|
||||
ggml_cl_init();
|
||||
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
|
||||
}
|
||||
return alignment;
|
||||
|
||||
GGML_UNUSED(buffer_type);
|
||||
}
|
||||
|
||||
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
|
||||
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
|
||||
return ggml_backend_is_cpu(backend);
|
||||
|
||||
GGML_UNUSED(buffer_type);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
||||
/* .get_alloc_size = */ NULL,
|
||||
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
|
||||
static ggml_backend_buffer_type buffer_type = {
|
||||
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &buffer_type;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// host buffer type
|
||||
|
||||
static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CL_Host";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return "CL_Host";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_cl_host_free(buffer->context);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr = ggml_cl_host_malloc(size);
|
||||
|
||||
if (ptr == nullptr) {
|
||||
// fallback to cpu buffer
|
||||
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
buffer->buft = buft;
|
||||
buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
|
||||
buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_opencl_buffer_type_host;
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
|
||||
return "OpenCL";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_free(ggml_backend_t backend) {
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_opencl_buffer_type();
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
||||
for (int i = 0; i < graph->n_nodes; ++i) {
|
||||
ggml_tensor * node = graph->nodes[i];
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
|
||||
break;
|
||||
case GGML_OP_MUL:
|
||||
ggml_cl_mul(node->src[0], node->src[1], node);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
|
||||
case GGML_OP_MUL:
|
||||
// return ggml_can_repeat_rows(op->src[1], op->src[0]);
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static ggml_backend_i opencl_backend_i = {
|
||||
/* .get_name = */ ggml_backend_opencl_name,
|
||||
/* .free = */ ggml_backend_opencl_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_from_async = */ NULL,
|
||||
/* .cpy_tensor_to_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_opencl_supports_op,
|
||||
};
|
||||
|
||||
ggml_backend_t ggml_backend_opencl_init() {
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .interface = */ opencl_backend_i,
|
||||
/* .context = */ nullptr
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_opencl(ggml_backend_t backend) {
|
||||
return backend && backend->iface.get_name == ggml_backend_opencl_name;
|
||||
}
|
||||
#endif
|
||||
|
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -9,17 +10,26 @@ extern "C" {
|
||||
GGML_API void ggml_cl_init(void);
|
||||
|
||||
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
|
||||
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
GGML_API void * ggml_cl_host_malloc(size_t size);
|
||||
GGML_API void ggml_cl_host_free(void * ptr);
|
||||
// GGML_API void * ggml_cl_host_malloc(size_t size);
|
||||
// GGML_API void ggml_cl_host_free(void * ptr);
|
||||
|
||||
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
|
||||
|
||||
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
// backend API
|
||||
|
||||
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
|
||||
|
||||
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
|
||||
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
30
ggml.c
30
ggml.c
@ -2336,6 +2336,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
||||
}
|
||||
|
||||
void ggml_free(struct ggml_context * ctx) {
|
||||
if (ctx == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// make this function thread safe
|
||||
ggml_critical_section_start();
|
||||
|
||||
@ -4351,6 +4355,23 @@ struct ggml_tensor * ggml_cpy_inplace(
|
||||
return ggml_cpy_impl(ctx, a, b, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_type type) {
|
||||
bool is_node = false;
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
|
||||
ggml_format_name(result, "%s (copy)", a->name);
|
||||
|
||||
result->op = GGML_OP_CPY;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
result->src[1] = result;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_cont
|
||||
|
||||
static struct ggml_tensor * ggml_cont_impl(
|
||||
@ -14851,7 +14872,7 @@ size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tenso
|
||||
return i;
|
||||
}
|
||||
|
||||
static struct ggml_hash_set ggml_hash_set_new(size_t size) {
|
||||
struct ggml_hash_set ggml_hash_set_new(size_t size) {
|
||||
size = ggml_hash_size(size);
|
||||
struct ggml_hash_set result;
|
||||
result.size = size;
|
||||
@ -16600,7 +16621,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
return GGML_EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
|
||||
if (n_threads <= 0) {
|
||||
n_threads = GGML_DEFAULT_N_THREADS;
|
||||
}
|
||||
@ -16662,14 +16683,15 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
cur = 0;
|
||||
const struct ggml_tensor * src0 = node->src[2];
|
||||
const struct ggml_tensor * src1 = node->src[1];
|
||||
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
|
||||
if (src1->type != vec_dot_type) {
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
}
|
||||
const int n_as = ggml_get_op_params_i32(node, 1);
|
||||
cur = GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
|
||||
} break;
|
||||
|
9
ggml.h
9
ggml.h
@ -1167,6 +1167,11 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_type type);
|
||||
|
||||
// make contiguous
|
||||
GGML_API struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
@ -1849,8 +1854,8 @@ extern "C" {
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
|
17
llama.h
17
llama.h
@ -116,6 +116,12 @@ extern "C" {
|
||||
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
LLAMA_SPLIT_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
|
||||
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
|
||||
};
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
float logit; // log-odds of the token
|
||||
@ -178,8 +184,15 @@ extern "C" {
|
||||
|
||||
struct llama_model_params {
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||||
|
||||
// main_gpu interpretation depends on split_mode:
|
||||
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
|
||||
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
|
||||
// LLAMA_SPLIT_LAYER: ignored
|
||||
int32_t main_gpu;
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
|
||||
const float * tensor_split;
|
||||
|
||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
// If the provided progress_callback returns true, model loading continues.
|
||||
|
@ -376,6 +376,11 @@ struct test_case {
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// build graph
|
||||
ggml_build_forward_expand(gf, out);
|
||||
@ -463,19 +468,23 @@ struct test_case {
|
||||
GGML_UNUSED(index);
|
||||
};
|
||||
|
||||
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
||||
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
||||
|
||||
if (ud.ok) {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
} else {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
if (!cmp_ok) {
|
||||
printf("compare failed ");
|
||||
}
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
return ud.ok;
|
||||
if (ud.ok && cmp_ok) {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return true;
|
||||
}
|
||||
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eval_perf(ggml_backend_t backend, const char * op_name) {
|
||||
@ -519,6 +528,11 @@ struct test_case {
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// randomize tensors
|
||||
initialize_tensors(ctx);
|
||||
|
Loading…
Reference in New Issue
Block a user