This commit is contained in:
Jared Van Bortel 2024-01-10 11:29:04 -05:00
parent 3773e1afe7
commit 1eb8804c18
18 changed files with 2183 additions and 2081 deletions

View File

@ -543,9 +543,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]); params.n_gpu_layers = std::stoi(argv[i]);
#else #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
@ -554,9 +553,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers_draft = std::stoi(argv[i]); params.n_gpu_layers_draft = std::stoi(argv[i]);
#else #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
@ -565,25 +563,44 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]); params.main_gpu = std::stoi(argv[i]);
#else #ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
#endif #endif // GGML_USE_CUBLAS
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_ROW;
} else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--tensor-split" || arg == "-ts") { } else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i]; std::string arg_next = argv[i];
// split string by , and / // split string by , and /
const std::regex regex{R"([,/]+)"}; const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}}; std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); if (split_arg.size() >= LLAMA_MAX_DEVICES) {
invalid_param = true;
break;
}
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
if (i < split_arg.size()) { if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]); params.tensor_split[i] = std::stof(split_arg[i]);
@ -591,14 +608,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.tensor_split[i] = 0.0f; params.tensor_split[i] = 0.0f;
} }
} }
#else #ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
#ifdef GGML_USE_CUBLAS
params.mul_mat_q = false;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
} else if (arg == "--no-mmap") { } else if (arg == "--no-mmap") {
params.use_mmap = false; params.use_mmap = false;
@ -909,14 +920,15 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" number of layers to store in VRAM\n"); printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n"); printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
#ifdef GGML_USE_CUBLAS printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
printf(" -nommq, --no-mul-mat-q\n");
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
printf(" Not recommended since this is both slower and uses more VRAM.\n");
#endif // GGML_USE_CUBLAS
#endif #endif
printf(" -gan N, --grp-attn-n N\n"); printf(" -gan N, --grp-attn-n N\n");
printf(" group-attention factor (default: %d)\n", params.grp_attn_n); printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
@ -1033,6 +1045,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.n_gpu_layers = params.n_gpu_layers; mparams.n_gpu_layers = params.n_gpu_layers;
} }
mparams.main_gpu = params.main_gpu; mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split; mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;

View File

@ -59,6 +59,7 @@ struct gpt_params {
float p_split = 0.1f; // speculative decoding split probability float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width. int32_t n_beams = 0; // if non-zero then use beam search of given width.

View File

@ -88,7 +88,10 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
model_params.n_gpu_layers = n_gpu_layers; model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

View File

@ -229,6 +229,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else { } else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
ggml_backend_buffer_reset(alloc->buffer);
} }
} }
@ -779,10 +780,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
if (nbytes == 0) { if (nbytes == 0) {
// all the tensors in the context are already allocated // all the tensors in the context are already allocated
#ifndef NDEBUG
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
#endif
return NULL; return NULL;
} }
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
if (buffer == NULL) {
// failed to allocate buffer
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
#endif
return NULL;
}
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer); ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {

View File

@ -16,9 +16,10 @@ extern "C" {
typedef void * ggml_backend_buffer_type_context_t; typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i { struct ggml_backend_buffer_type_i {
const char * (*get_name) (ggml_backend_buffer_type_t buft);
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory // check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) // should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
@ -34,16 +35,17 @@ extern "C" {
typedef void * ggml_backend_buffer_context_t; typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i { struct ggml_backend_buffer_i {
const char * (*get_name) (ggml_backend_buffer_t buffer);
void (*free_buffer) (ggml_backend_buffer_t buffer); void (*free_buffer) (ggml_backend_buffer_t buffer);
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
void * (*get_base) (ggml_backend_buffer_t buffer); void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers // (optional) copy tensor between different buffer-type, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value); void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
}; };
struct ggml_backend_buffer { struct ggml_backend_buffer {
@ -51,6 +53,7 @@ extern "C" {
ggml_backend_buffer_type_t buft; ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context; ggml_backend_buffer_context_t context;
size_t size; size_t size;
enum ggml_backend_buffer_usage usage;
}; };
ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_t ggml_backend_buffer_init(
@ -79,13 +82,13 @@ extern "C" {
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) asynchroneous tensor copy // (optional) asynchroneous tensor copy
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_from_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to_async) (ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
void (*synchronize)(ggml_backend_t backend); void (*synchronize)(ggml_backend_t backend);
// compute graph with a plan // compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph); ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);

View File

@ -15,6 +15,10 @@
// backend buffer type // backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
return buft->iface.alloc_buffer(buft, size); return buft->iface.alloc_buffer(buft, size);
} }
@ -58,11 +62,16 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
/* .buft = */ buft, /* .buft = */ buft,
/* .context = */ context, /* .context = */ context,
/* .size = */ size, /* .size = */ size,
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
}; };
return buffer; return buffer;
} }
const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name(buffer);
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) { if (buffer == NULL) {
return; return;
@ -94,11 +103,11 @@ void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_t
} }
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) { size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer)); return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
} }
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor); return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
} }
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
@ -106,13 +115,23 @@ void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
} }
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer)); return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
} }
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) { void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
buffer->usage = usage;
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
return buffer->buft; return buffer->buft;
} }
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
if (buffer->iface.reset) {
buffer->iface.reset(buffer);
}
}
// backend // backend
const char * ggml_backend_name(ggml_backend_t backend) { const char * ggml_backend_name(ggml_backend_t backend) {
@ -392,6 +411,12 @@ ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
// backend CPU // backend CPU
static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
return "CPU";
GGML_UNUSED(buffer);
}
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
return (void *)buffer->context; return (void *)buffer->context;
} }
@ -412,13 +437,13 @@ static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, con
GGML_UNUSED(buffer); GGML_UNUSED(buffer);
} }
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) { static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
GGML_UNUSED(buffer); GGML_UNUSED(buffer);
} }
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) { static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
GGML_UNUSED(buffer); GGML_UNUSED(buffer);
@ -429,6 +454,7 @@ static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
} }
static struct ggml_backend_buffer_i cpu_backend_buffer_i = { static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .get_name = */ ggml_backend_cpu_buffer_name,
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base, /* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required /* .init_tensor = */ NULL, // no initialization required
@ -437,10 +463,12 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear, /* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,
}; };
// for buffers from ptr, free is not called // for buffers from ptr, free is not called
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .get_name = */ ggml_backend_cpu_buffer_name,
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base, /* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required /* .init_tensor = */ NULL, // no initialization required
@ -449,10 +477,17 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear, /* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,
}; };
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
@ -483,6 +518,7 @@ static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
/* .iface = */ { /* .iface = */ {
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
@ -501,6 +537,18 @@ ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
#include <hbwmalloc.h> #include <hbwmalloc.h>
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
return "CPU_HBM";
GGML_UNUSED(buf);
}
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context); hbw_free(buffer->context);
} }
@ -514,17 +562,18 @@ static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_
return NULL; return NULL;
} }
// FIXME: this is a hack to avoid having to implement a new buffer type
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft; buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer; buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer; return buffer;
} }
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() { ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ { /* .iface = */ {
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
@ -568,7 +617,7 @@ struct ggml_backend_plan_cpu {
struct ggml_cgraph cgraph; struct ggml_cgraph cgraph;
}; };
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
@ -661,7 +710,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
} }
bool ggml_backend_is_cpu(ggml_backend_t backend) { bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_cpu_name; return backend && backend->iface.get_name == ggml_backend_cpu_name;
} }
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
@ -685,7 +734,7 @@ static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user
// scheduler // scheduler
#define GGML_MAX_BACKENDS 4 #define GGML_MAX_BACKENDS 16
#define GGML_MAX_SPLITS 256 #define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16 #define GGML_MAX_SPLIT_INPUTS 16
@ -695,9 +744,16 @@ struct ggml_backend_sched_split {
int i_end; int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS]; struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs; int n_inputs;
// graph view of this split
struct ggml_cgraph graph; struct ggml_cgraph graph;
}; };
// TODO: group all the hash values into a single struct for clarity
//struct sched_hash_value {
// ggml_tallocr_t tallocr;
// struct ggml_tensor * copies[GGML_MAX_BACKENDS];
//};
struct ggml_backend_sched { struct ggml_backend_sched {
int n_backends; int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS]; ggml_backend_t backends[GGML_MAX_BACKENDS];
@ -705,11 +761,15 @@ struct ggml_backend_sched {
ggml_gallocr_t galloc; ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set; struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size] // hash values (arrays of [hash_set.size])
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS] ggml_tallocr_t * node_talloc; // tallocr assigned to each node (indirectly this is the backend)
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // copies of each node for each destination backend
// copy of the graph with modified inputs
struct ggml_cgraph * graph; struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS]; struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits; int n_splits;
@ -777,7 +837,7 @@ static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_talloc
} }
#if 0 #if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)] #define GET_CAUSE(node) causes[hash_id(node)]
#else #else
@ -790,6 +850,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates // ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend. // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst // dst
ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer); ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
if (cur_backend != NULL) { if (cur_backend != NULL) {
@ -804,7 +865,6 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
} }
// src // src
int cur_prio = INT_MAX;
size_t cur_size = 0; size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
@ -812,18 +872,22 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
if (src == NULL) { if (src == NULL) {
break; break;
} }
ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer); ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
if (src_backend != NULL) { if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_prio = sched_backend_prio(sched, src_backend); // operations with weights are always on the same backend as the weights
cur_backend = src_backend;
SET_CAUSE(node, "1.wgt%d", i);
break;
}
size_t src_size = ggml_nbytes(src); size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) { if (src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size; cur_size = src_size;
cur_backend = src_backend; cur_backend = src_backend;
SET_CAUSE(node, "1.src%d", i); SET_CAUSE(node, "1.src%d", i);
} }
} }
}
return cur_backend; return cur_backend;
} }
@ -857,7 +921,7 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
} }
ggml_tallocr_t node_allocr = node_allocr(node); ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME: ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node)); fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
@ -866,7 +930,7 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
} }
ggml_tallocr_t src_allocr = node_allocr(src); ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL; ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src)); fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
@ -882,14 +946,16 @@ static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, co
return dup; return dup;
} }
//#define DEBUG_PASS1
//#define DEBUG_PASS2
//#define DEBUG_PASS3
//#define DEBUG_PASS4
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes // TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state // reset splits
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0; sched->n_splits = 0;
struct ggml_init_params params = { struct ggml_init_params params = {
@ -898,11 +964,13 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
/* .no_alloc = */ true /* .no_alloc = */ true
}; };
if (sched->ctx != NULL) {
ggml_free(sched->ctx); ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params); sched->ctx = ggml_init(params);
if (sched->ctx == NULL) {
fprintf(stderr, "%s: failed to initialize context\n", __func__);
GGML_ASSERT(false);
}
// pass 1: assign backends to ops with allocated inputs // pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) { for (int i = 0; i < graph->n_leafs; i++) {
@ -931,45 +999,91 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend); node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
} }
} }
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); #ifdef DEBUG_PASS1
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 2: assign backends to ops from current assignments // pass 2: assign backends to ops from current assignments
// TODO: // start from the end and assign the same backend to previous ops
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
SET_CAUSE(node, "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs) // expand gpu backends (i.e. non last prio) up and down, ignoring cpu
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
// pass 2.1 expand gpu up
{
ggml_tallocr_t cur_allocr = NULL;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != NULL) {
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
// skip cpu
cur_allocr = NULL;
} else {
cur_allocr = node_allocr;
}
} else {
node_allocr(node) = cur_allocr;
SET_CAUSE(node, "2.cur");
}
}
}
// pass 2.2 expand gpu down
{
ggml_tallocr_t cur_allocr = NULL;
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node); ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != NULL) {
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
// skip cpu
cur_allocr = NULL;
} else {
cur_allocr = node_allocr;
}
} else {
node_allocr(node) = cur_allocr;
SET_CAUSE(node, "2.cur");
}
}
}
// pass 2.3 expand rest up
{
ggml_tallocr_t cur_allocr = NULL;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != NULL) {
cur_allocr = node_allocr;
} else {
node_allocr(node) = cur_allocr;
SET_CAUSE(node, "2.cur");
}
}
}
#ifdef DEBUG_PASS2
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 3: assign backends to remaining src from dst and view_src
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t cur_allocr = node_allocr(node);
if (ggml_is_view_op(node->op) && cur_allocr == NULL) {
cur_allocr = node_allocr(node) = node_allocr(node->view_src);
SET_CAUSE(node, "3.vsrc");
}
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
@ -977,16 +1091,21 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
} }
ggml_tallocr_t src_allocr = node_allocr(src); ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) { if (src_allocr == NULL) {
node_allocr(src) = node_allocr; if (src->view_src != NULL) {
// views are always on the same backend as the source
node_allocr(src) = node_allocr(src->view_src);
} else {
node_allocr(src) = cur_allocr;
} }
} }
} }
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); }
#ifdef DEBUG_PASS3
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 4: split graph, find tensors that need to be copied // pass 4: split graph, find tensors that need to be copied
// TODO: {
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0; int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
@ -1029,11 +1148,23 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
} }
ggml_tallocr_t src_allocr = node_allocr(src); ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) { if (src_allocr != node_allocr) {
// check if the input is already in the split
bool found = false;
for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) {
if (sched->splits[cur_split].inputs[k] == src) {
found = true;
break;
}
}
if (!found) {
int n_inputs = sched->splits[cur_split].n_inputs++; int n_inputs = sched->splits[cur_split].n_inputs++;
//printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr)));
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src; sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
}
// create copies // create a copy of the input in the split's backend
size_t id = hash_id(src); size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) { if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
@ -1048,10 +1179,12 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
} }
sched->splits[cur_split].i_end = graph->n_nodes; sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1; sched->n_splits = cur_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout); #ifndef NDEBUG
#if 1
// sanity check: all sources should have the same backend as the node // sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
@ -1059,6 +1192,11 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
if (node_allocr == NULL) { if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name); fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
} }
if (node->view_src != NULL && node_allocr != node_allocr(node->view_src)) {
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
node->view_src->name, node_allocr(node->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(node->view_src))) : "NULL");
}
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
@ -1070,8 +1208,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL", node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL"); j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
} }
if (src->view_src != NULL && src_allocr != node_allocr(src->view_src)) {
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL",
src->view_src->name, node_allocr(src->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(src->view_src))) : "NULL");
} }
} }
}
fflush(stderr);
#endif #endif
// create copies of the graph for each split // create copies of the graph for each split
@ -1085,6 +1229,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
for (int j = 0; j < split->n_inputs; j++) { for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)]; struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
// add a dependency to the input source so that it is not freed before the copy is done
input_cpy->src[0] = input; input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
} }
@ -1121,19 +1266,20 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)]; struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
if (input->buffer == NULL) { if (input->buffer == NULL) {
GGML_ASSERT(false);
if (input->view_src == NULL) { if (input->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", input->name); fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
exit(1); GGML_ASSERT(false);
} }
// FIXME: may need to use the sched buffer instead // FIXME: may need to use the sched buffer instead
ggml_backend_view_init(input->view_src->buffer, input); ggml_backend_view_init(input->view_src->buffer, input);
} }
if (input_cpy->buffer == NULL) { if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name); fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1); GGML_ASSERT(false);
} }
//GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend); // TODO: avoid this copy if it was already copied in a previous split, and the input didn't change
//GGML_ASSERT(input_cpy->buffer->backend == split_backend); // this is important to avoid copying constants such as KQ_mask and inp_pos multiple times
ggml_backend_tensor_copy(input, input_cpy); ggml_backend_tensor_copy(input, input_cpy);
} }
// ggml_backend_synchronize(split_backend); // ggml_backend_synchronize(split_backend);
@ -1168,13 +1314,23 @@ static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) { for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]); ggml_tallocr_reset(sched->tallocs[i]);
} }
// reset state for the next run
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
} }
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) { ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends, size_t graph_size) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS); GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched)); struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
memset(sched, 0, sizeof(struct ggml_backend_sched));
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched->node_talloc = calloc(sizeof(sched->node_talloc[0]) * sched->hash_set.size, 1);
sched->node_copies = calloc(sizeof(sched->node_copies[0]) * sched->hash_set.size, 1);
sched->n_backends = n_backends; sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) { for (int i = 0; i < n_backends; i++) {
@ -1199,6 +1355,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
ggml_tallocr_free(sched->tallocs[i]); ggml_tallocr_free(sched->tallocs[i]);
} }
ggml_gallocr_free(sched->galloc); ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->hash_set.keys); free(sched->hash_set.keys);
free(sched->node_talloc); free(sched->node_talloc);
free(sched->node_copies); free(sched->node_copies);
@ -1206,12 +1363,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
} }
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables GGML_ASSERT(ggml_tallocr_is_measure(sched->tallocs[0])); // can only be initialized once
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph); sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched); sched_alloc_splits(sched);
@ -1227,7 +1379,7 @@ void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgr
} }
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph); sched_split_graph(sched, graph);
sched_alloc_splits(sched); sched_alloc_splits(sched);
@ -1235,13 +1387,19 @@ void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cg
sched_reset(sched); sched_reset(sched);
} }
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) { ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend); int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return sched->tallocs[backend_index]; return sched->tallocs[backend_index];
} }
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) { ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend); int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]); return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
} }
@ -1252,9 +1410,10 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
} }
// utils // utils
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->buffer == NULL);
//GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized //GGML_ASSERT(tensor->data == NULL); // views of pre-allocated tensors may have the data set in ggml_new_tensor, but still need to be initialized by the backend
GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL);
GGML_ASSERT(tensor->view_src->data != NULL); GGML_ASSERT(tensor->view_src->data != NULL);
@ -1320,6 +1479,7 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor
struct ggml_tensor * dst = node_copies[id]; struct ggml_tensor * dst = node_copies[id];
if (dst->view_src != NULL) { if (dst->view_src != NULL) {
graph_init_tensor(hash_set, node_copies, node_init, src->view_src);
ggml_backend_view_init(dst->view_src->buffer, dst); ggml_backend_view_init(dst->view_src->buffer, dst);
} }
else { else {
@ -1353,6 +1513,21 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
struct ggml_context * ctx_allocated = ggml_init(params); struct ggml_context * ctx_allocated = ggml_init(params);
struct ggml_context * ctx_unallocated = ggml_init(params); struct ggml_context * ctx_unallocated = ggml_init(params);
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
fprintf(stderr, "failed to allocate context for graph copy\n");
free(hash_set.keys);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
return (struct ggml_backend_graph_copy) {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
/* .graph = */ NULL,
};
}
// dup nodes // dup nodes
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
@ -1361,6 +1536,20 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
// allocate nodes // allocate nodes
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
if (buffer == NULL) {
fprintf(stderr, "failed to allocate buffer for graph copy\n");
free(hash_set.keys);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
return (struct ggml_backend_graph_copy) {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
/* .graph = */ NULL,
};
}
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024); //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
@ -1397,8 +1586,12 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
ggml_free(copy.ctx_unallocated); ggml_free(copy.ctx_unallocated);
} }
void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) { bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph); struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
if (copy.buffer == NULL) {
return false;
}
struct ggml_cgraph * g1 = graph; struct ggml_cgraph * g1 = graph;
struct ggml_cgraph * g2 = copy.graph; struct ggml_cgraph * g2 = copy.graph;
@ -1428,4 +1621,6 @@ void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
} }
ggml_backend_graph_copy_free(copy); ggml_backend_graph_copy_free(copy);
return true;
} }

View File

@ -17,6 +17,7 @@ extern "C" {
// //
// buffer type // buffer type
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
@ -24,6 +25,12 @@ extern "C" {
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer // buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
};
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
@ -32,7 +39,10 @@ extern "C" {
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
// //
// Backend // Backend
@ -140,24 +150,23 @@ extern "C" {
typedef struct ggml_backend_sched * ggml_backend_sched_t; typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler // Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends); GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends, size_t graph_size);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph // Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler // Allocate and compute graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute( GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched, ggml_backend_sched_t sched,
struct ggml_cgraph * graph); struct ggml_cgraph * graph);
// //
// Utils // Utils
// //
@ -176,7 +185,7 @@ extern "C" {
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends // Compare the output of two backends
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization // Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);

File diff suppressed because it is too large Load Diff

View File

@ -27,22 +27,6 @@ GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr); GGML_API void ggml_cuda_host_free(void * ptr);
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_set_main_device(int main_device);
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
GGML_API void ggml_cuda_free_scratch(void);
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API int ggml_cuda_get_device_count(void); GGML_API int ggml_cuda_get_device_count(void);
@ -52,13 +36,17 @@ GGML_API void ggml_cuda_get_device_description(int device, char * description,
GGML_API ggml_backend_t ggml_backend_cuda_init(int device); GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_API int ggml_backend_cuda_get_device_count(void);
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -228,6 +228,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_HASHTABLE_FULL ((size_t)-1) #define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2) #define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key); bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted // returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted

View File

@ -2482,10 +2482,10 @@ static void ggml_backend_metal_free_device(void) {
} }
} }
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; return "Metal";
return ctx->all_data; UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@ -2503,6 +2503,12 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
free(ctx); free(ctx);
} }
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size); memcpy((char *)tensor->data + offset, data, size);
@ -2515,13 +2521,13 @@ static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, c
UNUSED(buffer); UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) { static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
UNUSED(buffer); UNUSED(buffer);
} }
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) { static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(buffer); UNUSED(buffer);
@ -2534,6 +2540,7 @@ static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_
} }
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = { static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .get_name = */ ggml_backend_metal_buffer_get_name,
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base, /* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL, /* .init_tensor = */ NULL,
@ -2542,10 +2549,17 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from, /* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to, /* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_metal_buffer_clear, /* .clear = */ ggml_backend_metal_buffer_clear,
/* .reset = */ NULL,
}; };
// default buffer type // default buffer type
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "Metal";
UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
@ -2618,6 +2632,7 @@ static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t bu
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ { /* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer, /* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
@ -2641,6 +2656,14 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
ctx->n_buffers = 0; ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE); const size_t size_page = sysconf(_SC_PAGESIZE);
// page-align the data ptr
{
const uintptr_t offs = (uintptr_t) data % size_page;
data = (void *) ((char *) data - offs);
size += offs;
}
size_t size_aligned = size; size_t size_aligned = size;
if ((size_aligned % size_page) != 0) { if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page)); size_aligned += (size_page - (size_aligned % size_page));
@ -2741,7 +2764,7 @@ static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct
UNUSED(backend); UNUSED(backend);
} }
static struct ggml_backend_i metal_backend_i = { static struct ggml_backend_i ggml_backend_metal_i = {
/* .get_name = */ ggml_backend_metal_name, /* .get_name = */ ggml_backend_metal_name,
/* .free = */ ggml_backend_metal_free, /* .free = */ ggml_backend_metal_free,
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type, /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
@ -2767,7 +2790,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
*metal_backend = (struct ggml_backend) { *metal_backend = (struct ggml_backend) {
/* .interface = */ metal_backend_i, /* .interface = */ ggml_backend_metal_i,
/* .context = */ ctx, /* .context = */ ctx,
}; };
@ -2775,7 +2798,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
} }
bool ggml_backend_is_metal(ggml_backend_t backend) { bool ggml_backend_is_metal(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_metal_name; return backend && backend->iface.get_name == ggml_backend_metal_name;
} }
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {

View File

@ -1,5 +1,6 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-opencl.h" #include "ggml-opencl.h"
#include "ggml-backend-impl.h"
#include <array> #include <array>
#include <atomic> #include <atomic>
@ -10,7 +11,7 @@
#include <sstream> #include <sstream>
#include <vector> #include <vector>
#define CL_TARGET_OPENCL_VERSION 110 #define CL_TARGET_OPENCL_VERSION 120
#include <clblast.h> #include <clblast.h>
#if defined(_MSC_VER) #if defined(_MSC_VER)
@ -929,6 +930,11 @@ static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, co
} }
void ggml_cl_init(void) { void ggml_cl_init(void) {
static bool initialized = false;
if (initialized) {
return;
}
cl_int err; cl_int err;
struct cl_device; struct cl_device;
@ -1483,8 +1489,8 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
} }
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
size_t x_offset = 0; size_t x_offset = 0;
@ -1501,7 +1507,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
// copy src1 to device // copy src1 to device
if (src1->backend == GGML_BACKEND_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
}
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
@ -1522,19 +1530,25 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
} }
// copy dst to host // copy dst to host
if (dst->backend == GGML_BACKEND_CPU) {
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
} }
} }
} }
} }
}
if (src0->backend != GGML_BACKEND_GPU) { if (src0->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_X, x_size);
} }
if (src1->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_Y, y_size);
}
if (dst->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_D, d_size); ggml_cl_pool_free(d_D, d_size);
} }
}
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(fp16_support); GGML_ASSERT(fp16_support);
@ -1598,6 +1612,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
} }
// FIXME: convert on device
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
// convert src1 to fp16 // convert src1 to fp16
// TODO: use multiple threads // TODO: use multiple threads
@ -1643,11 +1659,13 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
} }
// copy dst to host, then convert to float // copy dst to host, then convert to float
if (dst->backend == GGML_BACKEND_CPU) {
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne); ggml_fp16_to_fp32_row(tmp, d, d_ne);
} else {
// FIXME: convert dst to fp32 on device
}
} }
} }
} }
@ -1801,7 +1819,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
} }
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0]; const int64_t ne0 = dst->ne[0];
@ -1895,3 +1913,292 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
tensor->extra = dst; tensor->extra = dst;
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
} }
// ggml-backend
// buffer
struct ggml_backend_opencl_buffer_context {
~ggml_backend_opencl_buffer_context() {
if (buffer) {
clReleaseMemObject(buffer);
}
for (auto * sub_buffer : sub_buffers) {
clReleaseMemObject(sub_buffer);
}
}
cl_mem buffer;
std::vector<cl_mem> sub_buffers;
};
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
return "OpenCL";
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
delete ctx;
}
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
return cl_ptr_base;
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
tensor->extra = tensor->view_src->extra;
} else {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
cl_int err;
cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
ctx->sub_buffers.push_back(sub_buffer);
tensor->extra = sub_buffer;
}
tensor->backend = GGML_BACKEND_GPU;
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
cl_mem tensor_buffer = (cl_mem) tensor->extra;
CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
cl_mem tensor_buffer = (cl_mem) tensor->extra;
CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
}
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
for (auto * sub_buffer : ctx->sub_buffers) {
clReleaseMemObject(sub_buffer);
}
ctx->sub_buffers.clear();
}
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
/* .get_name = */ ggml_backend_opencl_buffer_get_name,
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
/* .cpy_tensor_from = */ NULL,
/* .cpy_tensor_to = */ NULL,
/* .clear = */ ggml_backend_opencl_buffer_clear,
/* .reset = */ ggml_backend_opencl_buffer_reset,
};
// buffer type
static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
return "OpenCL";
GGML_UNUSED(buffer_type);
}
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
ggml_cl_init();
cl_int err;
cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
if (err != CL_SUCCESS) {
fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
return nullptr;
}
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
}
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
// FIXME: not thread safe, device may not be initialized yet
static cl_uint alignment = -1;
if (alignment == (cl_uint)-1) {
ggml_cl_init();
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
}
return alignment;
GGML_UNUSED(buffer_type);
}
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
return ggml_backend_is_cpu(backend);
GGML_UNUSED(buffer_type);
}
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL,
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
/* .is_host = */ NULL,
};
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
static ggml_backend_buffer_type buffer_type = {
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
/* .context = */ nullptr,
};
return &buffer_type;
}
#if 0
// host buffer type
static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "CL_Host";
GGML_UNUSED(buft);
}
static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
return "CL_Host";
GGML_UNUSED(buffer);
}
static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_cl_host_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cl_host_malloc(size);
if (ptr == nullptr) {
// fallback to cpu buffer
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
/* .context = */ nullptr,
};
return &ggml_backend_opencl_buffer_type_host;
}
// backend
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
return "OpenCL";
GGML_UNUSED(backend);
}
static void ggml_backend_opencl_free(ggml_backend_t backend) {
GGML_UNUSED(backend);
}
static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_opencl_buffer_type();
GGML_UNUSED(backend);
}
static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
break;
case GGML_OP_MUL:
ggml_cl_mul(node->src[0], node->src[1], node);
break;
default:
GGML_ASSERT(false);
}
}
return true;
GGML_UNUSED(backend);
}
static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_MUL_MAT:
return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
case GGML_OP_MUL:
// return ggml_can_repeat_rows(op->src[1], op->src[0]);
return true;
default:
return false;
}
GGML_UNUSED(backend);
}
static ggml_backend_i opencl_backend_i = {
/* .get_name = */ ggml_backend_opencl_name,
/* .free = */ ggml_backend_opencl_free,
/* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
/* .supports_op = */ ggml_backend_opencl_supports_op,
};
ggml_backend_t ggml_backend_opencl_init() {
ggml_backend_t backend = new ggml_backend {
/* .interface = */ opencl_backend_i,
/* .context = */ nullptr
};
return backend;
}
bool ggml_backend_is_opencl(ggml_backend_t backend) {
return backend && backend->iface.get_name == ggml_backend_opencl_name;
}
#endif

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include "ggml.h" #include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -9,17 +10,26 @@ extern "C" {
GGML_API void ggml_cl_init(void); GGML_API void ggml_cl_init(void);
GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst);
GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); GGML_API size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); GGML_API void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
GGML_API void * ggml_cl_host_malloc(size_t size); // GGML_API void * ggml_cl_host_malloc(size_t size);
GGML_API void ggml_cl_host_free(void * ptr); // GGML_API void ggml_cl_host_free(void * ptr);
GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor); GGML_API void ggml_cl_free_data(const struct ggml_tensor* tensor);
GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor); GGML_API void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
// backend API
// GGML_API ggml_backend_t ggml_backend_opencl_init(void);
// GGML_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
// GGML_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

30
ggml.c
View File

@ -2336,6 +2336,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
} }
void ggml_free(struct ggml_context * ctx) { void ggml_free(struct ggml_context * ctx) {
if (ctx == NULL) {
return;
}
// make this function thread safe // make this function thread safe
ggml_critical_section_start(); ggml_critical_section_start();
@ -4351,6 +4355,23 @@ struct ggml_tensor * ggml_cpy_inplace(
return ggml_cpy_impl(ctx, a, b, true); return ggml_cpy_impl(ctx, a, b, true);
} }
struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type) {
bool is_node = false;
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
ggml_format_name(result, "%s (copy)", a->name);
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = result;
return result;
}
// ggml_cont // ggml_cont
static struct ggml_tensor * ggml_cont_impl( static struct ggml_tensor * ggml_cont_impl(
@ -14851,7 +14872,7 @@ size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tenso
return i; return i;
} }
static struct ggml_hash_set ggml_hash_set_new(size_t size) { struct ggml_hash_set ggml_hash_set_new(size_t size) {
size = ggml_hash_size(size); size = ggml_hash_size(size);
struct ggml_hash_set result; struct ggml_hash_set result;
result.size = size; result.size = size;
@ -16600,7 +16621,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
return GGML_EXIT_SUCCESS; return GGML_EXIT_SUCCESS;
} }
struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
if (n_threads <= 0) { if (n_threads <= 0) {
n_threads = GGML_DEFAULT_N_THREADS; n_threads = GGML_DEFAULT_N_THREADS;
} }
@ -16662,14 +16683,15 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
cur = 0;
const struct ggml_tensor * src0 = node->src[2]; const struct ggml_tensor * src0 = node->src[2];
const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * src1 = node->src[1];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type; const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src1->type != vec_dot_type) { if (src1->type != vec_dot_type) {
cur = ggml_row_size(vec_dot_type, ggml_nelements(src1)); cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
} }
const int n_as = ggml_get_op_params_i32(node, 1); const int n_as = ggml_get_op_params_i32(node, 1);
cur = GGML_PAD(cur, sizeof(int64_t)); // align cur += GGML_PAD(cur, sizeof(int64_t)); // align
cur += n_as * sizeof(int64_t); // matrix_row_counts cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
} break; } break;

7
ggml.h
View File

@ -1167,6 +1167,11 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type);
// make contiguous // make contiguous
GGML_API struct ggml_tensor * ggml_cont( GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1849,7 +1854,7 @@ extern "C" {
// ggml_graph_plan() has to be called before ggml_graph_compute() // ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data // when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context // same as ggml_graph_compute() but the work data is allocated as a part of the context

2200
llama.cpp

File diff suppressed because it is too large Load Diff

17
llama.h
View File

@ -116,6 +116,12 @@ extern "C" {
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN, LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
}; };
enum llama_split_mode {
LLAMA_SPLIT_NONE = 0, // single GPU
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
};
typedef struct llama_token_data { typedef struct llama_token_data {
llama_token id; // token id llama_token id; // token id
float logit; // log-odds of the token float logit; // log-odds of the token
@ -178,8 +184,15 @@ extern "C" {
struct llama_model_params { struct llama_model_params {
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors enum llama_split_mode split_mode; // how to split the model across multiple GPUs
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// main_gpu interpretation depends on split_mode:
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
// LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues. // If the provided progress_callback returns true, model loading continues.

View File

@ -376,6 +376,11 @@ struct test_case {
// allocate // allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
if (buf == NULL) {
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
ggml_free(ctx);
return false;
}
// build graph // build graph
ggml_build_forward_expand(gf, out); ggml_build_forward_expand(gf, out);
@ -463,19 +468,23 @@ struct test_case {
GGML_UNUSED(index); GGML_UNUSED(index);
}; };
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
if (ud.ok) { if (!cmp_ok) {
printf("\033[1;32mOK\033[0m\n"); printf("compare failed ");
} else {
printf("\033[1;31mFAIL\033[0m\n");
} }
ggml_backend_buffer_free(buf); ggml_backend_buffer_free(buf);
ggml_free(ctx); ggml_free(ctx);
return ud.ok; if (ud.ok && cmp_ok) {
printf("\033[1;32mOK\033[0m\n");
return true;
}
printf("\033[1;31mFAIL\033[0m\n");
return false;
} }
bool eval_perf(ggml_backend_t backend, const char * op_name) { bool eval_perf(ggml_backend_t backend, const char * op_name) {
@ -519,6 +528,11 @@ struct test_case {
// allocate // allocate
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
if (buf == NULL) {
printf("failed to allocate tensors\n");
ggml_free(ctx);
return false;
}
// randomize tensors // randomize tensors
initialize_tensors(ctx); initialize_tensors(ctx);