Detokenizer fixes (#8039)

* Add llama_detokenize():
  - Update header files location
  - UNKNOWN and CONTROL are 'special pieces'
  - Remove space after UNKNOWN and CONTROL
  - Refactor llama_token_to_piece()
  - Add flag: clean_up_tokenization_spaces
  - Symmetric params for llama_tokenize() and llama_detokenize()

* Update and fix tokenizer tests:
  - Using llama_detokenize()
  - Unexpected vocab type as test fail instead of error
    - Useful when automating tests:
    - If you don't know in advance the vocab type
    - Differenciate other loading errors
  - Skip unicode surrogaes and undefined
  - Gracefully exit threads
    - Using exit() is throwing random exceptions
  - Clean old known problematic codepoints
  - Minor: confusing hexadecimal codepoint

* Update bruteforce random tests
  - Add detokenizer checks
  - New generator: ascii_lr_strip
  - New generator: apostrophe
  - Add more vocabs files
  - Detokenize special tokens.
  - Replace errors with '\uFFFD' when detokenizing to 'utf-8'
  - More edge cases
  - Better detokenization results check

* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces
This commit is contained in:
jaime-m-p 2024-07-05 19:01:35 +02:00 committed by GitHub
parent be20e7f49d
commit 213701b51a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 499 additions and 265 deletions

View File

@ -2592,51 +2592,35 @@ std::vector<llama_token> llama_tokenize(
} }
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
std::vector<char> result(8, 0); std::string piece;
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
if (n_tokens < 0) { const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
result.resize(-n_tokens); if (n_chars < 0) {
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); piece.resize(-n_chars);
GGML_ASSERT(check == -n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
} else { GGML_ASSERT(check == -n_chars);
result.resize(n_tokens); }
else {
piece.resize(n_chars);
} }
return std::string(result.data(), result.size()); return piece;
} }
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) { std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
const llama_token bos_id = llama_token_bos(llama_get_model(ctx)); std::string text;
text.resize(std::max(text.capacity(), tokens.size()));
std::string piece; int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
std::string result; if (n_chars < 0) {
text.resize(-n_chars);
for (size_t i = 0; i < tokens.size(); ++i) { n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
piece = llama_token_to_piece(ctx, tokens[i]); GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
// remove the leading space of the first non-BOS token
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
piece = piece.substr(1);
} }
result += piece; text.resize(n_chars);
}
return result;
}
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
result += piece;
}
// NOTE: the original tokenizer decodes bytes after collecting the pieces. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
return result; return text;
} }
bool llama_should_add_bos_token(const llama_model * model) { bool llama_should_add_bos_token(const llama_model * model) {

View File

@ -350,21 +350,13 @@ std::string llama_token_to_piece(
llama_token token, llama_token token,
bool special = true); bool special = true);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
//
// detokenizes a vector of tokens into a string // detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode` // should work similar to Python's `tokenizer.decode`
// removes the leading space from the first non-BOS token // optionally renders special/control tokens
std::string llama_detokenize_spm( std::string llama_detokenize(
llama_context * ctx, llama_context * ctx,
const std::vector<llama_token> & tokens); const std::vector<llama_token> & tokens,
bool special = true);
// detokenizes a vector of tokens into a string
// should work similar to Python's `tokenizer.decode`
std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// Uses the value from the model metadata if possible, otherwise // Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false. // defaults to true when model type is SPM, otherwise false.

View File

@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8) var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false) let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
if nTokens < 0 { if nTokens < 0 {
let actualTokensCount = -Int(nTokens) let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount) result = .init(repeating: 0, count: actualTokensCount)
@ -238,6 +238,7 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
token, token,
&result, &result,
Int32(result.count), Int32(result.count),
0,
false false
) )
assert(check == actualTokensCount) assert(check == actualTokensCount)

View File

@ -322,7 +322,7 @@ actor LlamaContext {
defer { defer {
result.deallocate() result.deallocate()
} }
let nTokens = llama_token_to_piece(model, token, result, 8, false) let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
if nTokens < 0 { if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens)) let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
@ -330,7 +330,7 @@ actor LlamaContext {
defer { defer {
newResult.deallocate() newResult.deallocate()
} }
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false) let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens)) let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer) return Array(bufferPointer)
} else { } else {

View File

@ -904,6 +904,7 @@ extern "C" {
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
/// @return Returns the number of tokens on success, no more than n_tokens_max /// @return Returns the number of tokens on success, no more than n_tokens_max
/// @return Returns a negative number on failure - the number of tokens that would have been returned /// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space. /// as plaintext. Does not insert a leading space.
LLAMA_API int32_t llama_tokenize( LLAMA_API int32_t llama_tokenize(
@ -918,15 +919,31 @@ extern "C" {
// Token Id -> Piece. // Token Id -> Piece.
// Uses the vocabulary in the provided context. // Uses the vocabulary in the provided context.
// Does not write null terminator to the buffer. // Does not write null terminator to the buffer.
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
// @param special If true, special tokens are rendered in the output. // @param special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_token_to_piece( LLAMA_API int32_t llama_token_to_piece(
const struct llama_model * model, const struct llama_model * model,
llama_token token, llama_token token,
char * buf, char * buf,
int32_t length, int32_t length,
int32_t lstrip,
bool special); bool special);
/// @details Convert the provided tokens into text (inverse of llama_tokenize()).
/// @param text The char pointer must be large enough to hold the resulting text.
/// @return Returns the number of chars/bytes on success, no more than text_len_max.
/// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
/// @param unparse_special If true, special tokens are rendered in the output.
LLAMA_API int32_t llama_detokenize(
const struct llama_model * model,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special);
/// Apply chat template. Inspired by hf apply_chat_template() on python. /// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template

View File

@ -1995,18 +1995,19 @@ using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
// NOTE: avoid ever using this except for building the token_to_piece caches // NOTE: avoid ever using this except for building the token_to_piece caches
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
std::vector<char> result(8, 0); std::string piece;
const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special); piece.resize(piece.capacity()); // using string internal cache
if (n_tokens < 0) { const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
result.resize(-n_tokens); if (n_chars < 0) {
int check = llama_token_to_piece(model, token, result.data(), result.size(), special); piece.resize(-n_chars);
GGML_ASSERT(check == -n_tokens); int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
} }
else { else {
result.resize(n_tokens); piece.resize(n_chars);
} }
return std::string(result.data(), result.size()); return piece;
} }
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
@ -2586,10 +2587,11 @@ struct llama_vocab {
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
// tokenizer flags // tokenizer flags
bool tokenizer_add_space_prefix = true; bool tokenizer_add_space_prefix = false;
bool tokenizer_add_bos = false; bool tokenizer_add_bos = false;
bool tokenizer_add_eos = false; bool tokenizer_add_eos = false;
bool tokenizer_ignore_merges = false; bool tokenizer_ignore_merges = false;
bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
bool tokenizer_remove_extra_whitespaces = false; bool tokenizer_remove_extra_whitespaces = false;
bool tokenizer_escape_whitespaces = true; bool tokenizer_escape_whitespaces = true;
bool tokenizer_treat_whitespace_as_suffix = false; bool tokenizer_treat_whitespace_as_suffix = false;
@ -5230,11 +5232,6 @@ static void llm_load_vocab(
vocab.special_pad_id = -1; vocab.special_pad_id = -1;
vocab.special_cls_id = -1; vocab.special_cls_id = -1;
vocab.special_mask_id = -1; vocab.special_mask_id = -1;
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
if (add_space_prefix_keyidx != -1) {
vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
} // The default value of add_space_prefix is true.
} else if (tokenizer_model == "bert") { } else if (tokenizer_model == "bert") {
vocab.type = LLAMA_VOCAB_TYPE_WPM; vocab.type = LLAMA_VOCAB_TYPE_WPM;
@ -5246,15 +5243,9 @@ static void llm_load_vocab(
vocab.special_pad_id = 0; vocab.special_pad_id = 0;
vocab.special_cls_id = 101; vocab.special_cls_id = 101;
vocab.special_mask_id = 103; vocab.special_mask_id = 103;
vocab.tokenizer_add_space_prefix = false;
} else if (tokenizer_model == "gpt2") { } else if (tokenizer_model == "gpt2") {
vocab.type = LLAMA_VOCAB_TYPE_BPE; vocab.type = LLAMA_VOCAB_TYPE_BPE;
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
if (add_space_prefix_keyidx != -1) {
vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
}
// read bpe merges and populate bpe ranks // read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
if (merges_keyidx == -1) { if (merges_keyidx == -1) {
@ -5333,6 +5324,8 @@ static void llm_load_vocab(
// for now, only BPE models have pre-tokenizers // for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
if (tokenizer_pre.empty()) { if (tokenizer_pre.empty()) {
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__); LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
LLAMA_LOG_WARN("%s: \n", __func__); LLAMA_LOG_WARN("%s: \n", __func__);
@ -5354,9 +5347,11 @@ static void llm_load_vocab(
} else if ( } else if (
tokenizer_pre == "deepseek-llm") { tokenizer_pre == "deepseek-llm") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
vocab.tokenizer_clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "deepseek-coder") { tokenizer_pre == "deepseek-coder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
vocab.tokenizer_clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "falcon") { tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
@ -5368,6 +5363,7 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
} else if ( } else if (
tokenizer_pre == "gpt-2" || tokenizer_pre == "gpt-2" ||
tokenizer_pre == "phi-2" ||
tokenizer_pre == "jina-es" || tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de" || tokenizer_pre == "jina-de" ||
tokenizer_pre == "jina-v2-es" || tokenizer_pre == "jina-v2-es" ||
@ -5383,6 +5379,7 @@ static void llm_load_vocab(
} else if ( } else if (
tokenizer_pre == "qwen2") { tokenizer_pre == "qwen2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
vocab.tokenizer_clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "stablelm2") { tokenizer_pre == "stablelm2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
@ -5398,9 +5395,11 @@ static void llm_load_vocab(
} else if ( } else if (
tokenizer_pre == "poro-chat") { tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
vocab.tokenizer_clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "viking") { tokenizer_pre == "viking") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
vocab.tokenizer_clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "jais") { tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
@ -5409,10 +5408,14 @@ static void llm_load_vocab(
} }
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
vocab.tokenizer_add_space_prefix = true;
vocab.tokenizer_clean_spaces = false;
vocab.tokenizer_add_bos = true; vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false; vocab.tokenizer_add_eos = false;
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
vocab.tokenizer_add_bos = true; vocab.tokenizer_add_bos = true;
vocab.tokenizer_add_eos = false; vocab.tokenizer_add_eos = false;
} else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) { } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
@ -5422,6 +5425,11 @@ static void llm_load_vocab(
} else { } else {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} }
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
if (add_space_prefix_keyidx != -1) {
vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
}
} }
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
@ -5603,7 +5611,7 @@ static void llm_load_vocab(
} }
} }
std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(), std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
[&] (const llama_vocab::id a, const llama_vocab::id b) { [&] (const llama_vocab::id a, const llama_vocab::id b) {
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size(); return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
} }
@ -16098,7 +16106,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
// tokenizer.encode('', add_special_tokens=True) returns [1] // tokenizer.encode('', add_special_tokens=True) returns [1]
// tokenizer.encode('', add_special_tokens=False) returns [] // tokenizer.encode('', add_special_tokens=False) returns []
bool is_prev_special = false; bool is_prev_special = true; // prefix with space if first token
if (add_special && vocab.tokenizer_add_bos) { if (add_special && vocab.tokenizer_add_bos) {
GGML_ASSERT(vocab.special_bos_id != -1); GGML_ASSERT(vocab.special_bos_id != -1);
@ -16110,11 +16118,10 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
if (vocab.tokenizer_add_space_prefix) { // prefix with space if previous is special
if (!output.size() || is_prev_special) { // prefix with space if first token if (vocab.tokenizer_add_space_prefix && is_prev_special) {
raw_text = " " + raw_text; raw_text = " " + raw_text;
} }
}
#ifdef PRETOKENIZERDEBUG #ifdef PRETOKENIZERDEBUG
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
@ -16122,6 +16129,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
llm_tokenizer_spm tokenizer(vocab); llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text); llama_escape_whitespace(raw_text);
tokenizer.tokenize(raw_text, output); tokenizer.tokenize(raw_text, output);
is_prev_special = false;
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
output.push_back(fragment.token); output.push_back(fragment.token);
is_prev_special = true; is_prev_special = true;
@ -20904,85 +20912,66 @@ static std::string llama_decode_text(const std::string & text) {
} }
// does not write null-terminator to buf // does not write null-terminator to buf
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) { int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
// ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
if (!special && llama_is_control_token(model->vocab, token)) { static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
const llama_token_attr attr = llama_token_get_attr(model, token);
if (!special && (attr & attr_special)) {
return 0; return 0;
} }
// copy piece chars to output text buffer
// skip up to 'lstrip' leading spaces before copying
auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
token++;
size--;
}
if (length < (int32_t)size) {
return (int32_t) -size;
}
memcpy(buf, token, size);
return (int32_t) size;
};
// if we have a cache - use it // if we have a cache - use it
{ {
const auto & cache = model->vocab.cache_token_to_piece; const auto & cache = model->vocab.cache_token_to_piece;
if (!cache.empty()) { if (!cache.empty()) {
const auto & res = cache.at(token); const auto & result = cache.at(token);
if (length < (int) res.size()) { return _try_copy(result.data(), result.size());
return -(int) res.size();
}
memcpy(buf, res.c_str(), res.size());
return res.size();
} }
} }
if (0 <= token && token < llama_n_vocab(model)) { if (0 <= token && token < llama_n_vocab(model)) {
const std::string & token_text = model->vocab.id_to_token[token].text;
switch (llama_vocab_get_type(model->vocab)) { switch (llama_vocab_get_type(model->vocab)) {
case LLAMA_VOCAB_TYPE_WPM: case LLAMA_VOCAB_TYPE_WPM:
case LLAMA_VOCAB_TYPE_SPM: case LLAMA_VOCAB_TYPE_SPM:
case LLAMA_VOCAB_TYPE_UGM: { case LLAMA_VOCAB_TYPE_UGM: {
// NOTE: we accept all unsupported token types, // NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens. // suppressing them like CONTROL tokens.
if (llama_is_normal_token(model->vocab, token)) { if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
std::string result = model->vocab.id_to_token[token].text; return _try_copy(token_text.data(), token_text.size());
} else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
std::string result = token_text;
llama_unescape_whitespace(result); llama_unescape_whitespace(result);
if (length < (int) result.length()) { return _try_copy(result.data(), result.size());
return -(int) result.length(); } else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
} char byte = (char) llama_token_to_byte(model->vocab, token);
memcpy(buf, result.c_str(), result.length()); return _try_copy((char*) &byte, 1);
return result.length();
} else if (
(llama_is_user_defined_token(model->vocab, token)) ||
(llama_is_control_token (model->vocab, token) && special)) {
std::string result = model->vocab.id_to_token[token].text;
if (length < (int) result.length()) {
return -(int) result.length();
}
memcpy(buf, result.c_str(), result.length());
return result.length();
} else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
if (length < 3) {
return -3;
}
memcpy(buf, "\xe2\x96\x85", 3);
return 3;
} else if (llama_is_byte_token(model->vocab, token)) {
if (length < 1) {
return -1;
}
buf[0] = llama_token_to_byte(model->vocab, token);
return 1;
} }
break; break;
} }
case LLAMA_VOCAB_TYPE_BPE: { case LLAMA_VOCAB_TYPE_BPE: {
// NOTE: we accept all unsupported token types, // NOTE: we accept all unsupported token types,
// suppressing them like CONTROL tokens. // suppressing them like CONTROL tokens.
if (llama_is_normal_token(model->vocab, token)) { if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
std::string result = model->vocab.id_to_token[token].text; return _try_copy(token_text.data(), token_text.size());
result = llama_decode_text(result); } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
if (length < (int) result.length()) { std::string result = llama_decode_text(token_text);
return -(int) result.length(); return _try_copy(result.data(), result.size());
}
memcpy(buf, result.c_str(), result.length());
return result.length();
} else if (
(llama_is_user_defined_token(model->vocab, token)) ||
(llama_is_control_token (model->vocab, token) && special)) {
std::string result = model->vocab.id_to_token[token].text;
if (length < (int) result.length()) {
return -(int) result.length();
}
memcpy(buf, result.c_str(), result.length());
return result.length();
} }
break; break;
} }
@ -20993,6 +20982,113 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
return 0; return 0;
} }
int32_t llama_detokenize(
const struct llama_model * model,
const llama_token * tokens,
int32_t n_tokens,
char * text,
int32_t text_len_max,
bool remove_special,
bool unparse_special) {
int32_t avail = text_len_max;
int32_t total = 0;
// remove the leading space
bool remove_space = model->vocab.tokenizer_add_space_prefix;
if (remove_special && model->vocab.tokenizer_add_bos) {
if (n_tokens > 0 && tokens[0] == model->vocab.special_bos_id) {
remove_space = false;
n_tokens--;
tokens++;
}
}
if (remove_special && model->vocab.tokenizer_add_eos) {
if (n_tokens > 0 && tokens[n_tokens-1] == model->vocab.special_eos_id) {
n_tokens--;
}
}
for (int32_t i = 0; i < n_tokens; ++i) {
GGML_ASSERT(avail >= 0);
int32_t n_chars = llama_token_to_piece(model, tokens[i], text, avail, remove_space, unparse_special);
remove_space = false;
if (n_chars < 0) {
avail = 0;
total -= n_chars;
} else if (n_chars > 0) {
avail -= n_chars;
text += n_chars;
total += n_chars;
}
}
if (total > text_len_max) {
return -total;
}
if (model->vocab.tokenizer_clean_spaces) {
text -= total; // restart text
// first pass: characters ?!., //TODO: where do these characters come from?
const int32_t total1 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total1; ++i) {
const char x = text[i];
if (text[i - 1] == ' ') {
if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
total--; // remove space
}
}
text[total++] = x;
}
// second pass: strip single apostrophe between spaces
const int32_t total2 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total2; ++i) {
const char x = text[i];
if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
total--; // remove prev space
text[++i] = '\0'; // remove next space
}
text[total++] = x;
}
// third pass: apostrophe contractions //NOTE: this makes sense?
const int32_t total3 = total;
total = total ? 1 : 0;
for (int32_t i = 1; i < total3; ++i) {
const char x = text[i];
if (text[i - 1] == ' ') {
if (x == '\'' && i + 1 < total3) {
const char x1 = text[i + 1];
if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
//total--; // remove space
} else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
total--; // remove space
} else if (i + 2 < total3) {
const char x2 = text[i + 2];
if ((x1 == 'l' && x2 == 'l')) { // " 'll"
//total--; // remove space
} else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
total--; // remove space
} else {
//total--; // remove space
}
} else {
//total--; // remove space
}
}
}
text[total++] = x;
}
}
return total <= text_len_max ? total : -total;
}
// trim whitespace from the beginning and end of a string // trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) { static std::string trim(const std::string & str) {
size_t start = 0; size_t start = 0;

View File

@ -232,8 +232,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
}; };
auto _get_flags = [&] (const size_t pos) -> codepoint_flags { auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
static const codepoint_flags undef(codepoint_flags::UNDEFINED); return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
}; };
size_t _prev_end = offset_ini; size_t _prev_end = offset_ini;
@ -295,9 +294,9 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
continue; continue;
} }
// regex: <space>?[^\s\p{L}\p{N}]+ // regex: <space>?[^\s\p{L}\p{N}]+
if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) { if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' '); pos += (cpt == ' ');
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) { while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos); flags2 = _get_flags(++pos);
} }
_add_token(pos); _add_token(pos);
@ -351,8 +350,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}; };
auto _get_flags = [&] (const size_t pos) -> codepoint_flags { auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
static const codepoint_flags undef(codepoint_flags::UNDEFINED); return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : undef;
}; };
size_t _prev_end = offset_ini; size_t _prev_end = offset_ini;
@ -394,8 +392,8 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
} }
} }
// regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct? // regex: [^\r\n\p{L}\p{N}]?\p{L}+
if (!(cpt == '\r' || cpt == '\n' || /*flags.is_letter |*/ flags.is_number)) { if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
pos++; pos++;
while (_get_flags(pos).is_letter) { while (_get_flags(pos).is_letter) {
@ -421,9 +419,9 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]* // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags); auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) { if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
pos += (cpt == ' '); pos += (cpt == ' ');
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number || flags2.is_undefined)) { while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos); flags2 = _get_flags(++pos);
} }
uint32_t cpt2 = _get_cpt(pos); uint32_t cpt2 = _get_cpt(pos);

View File

@ -195,11 +195,11 @@ int main(int argc, char **argv) {
const bool add_special = false; const bool add_special = false;
for (const auto & test_kv : k_tests) { for (const auto & test_kv : k_tests) {
const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special); const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special, true);
printf("\n"); printf("\n");
printf("src: '%s'\n", test_kv.first.c_str()); printf("src: '%s'\n", test_kv.first.c_str());
printf("res: '%s'\n", llama_detokenize_bpe(ctx, res).c_str()); printf("res: '%s'\n", llama_detokenize(ctx, res).c_str());
printf("tok: "); printf("tok: ");
for (const auto & tok : res) { for (const auto & tok : res) {
printf("%d ", tok); printf("%d ", tok);
@ -216,8 +216,8 @@ int main(int argc, char **argv) {
if (!correct) { if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__, fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
llama_detokenize_bpe(ctx, res).c_str(), llama_detokenize(ctx, res).c_str(),
llama_detokenize_bpe(ctx, test_kv.second).c_str()); llama_detokenize(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__); fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) { for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str()); fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str());
@ -253,7 +253,7 @@ int main(int argc, char **argv) {
{ {
const auto t_start = ggml_time_us(); const auto t_start = ggml_time_us();
res = llama_tokenize(ctx, text, add_special); res = llama_tokenize(ctx, text, add_special, true);
const auto t_end = ggml_time_us(); const auto t_end = ggml_time_us();
@ -272,7 +272,7 @@ int main(int argc, char **argv) {
} }
for (const auto & tok : res) { for (const auto & tok : res) {
//ofs << tok << " '" << string_strip(llama_detokenize_bpe(ctx, std::vector<int>{tok})) << "'" << std::endl; //ofs << tok << " '" << string_strip(llama_detokenize(ctx, std::vector<int>{tok})) << "'" << std::endl;
ofs << tok << "\n"; ofs << tok << "\n";
} }
} }

View File

@ -11,6 +11,7 @@
#include <string> #include <string>
#include <thread> #include <thread>
#include <vector> #include <vector>
#include <atomic>
int main(int argc, char **argv) { int main(int argc, char **argv) {
if (argc < 2 || argc > 3) { if (argc < 2 || argc > 3) {
@ -63,7 +64,10 @@ int main(int argc, char **argv) {
} }
} }
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE); //GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
return 99;
}
#ifdef _WIN32 #ifdef _WIN32
// We need this for unicode console support // We need this for unicode console support
@ -74,7 +78,7 @@ int main(int argc, char **argv) {
const int n_vocab = llama_n_vocab(model); const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) { for (int i = 0; i < n_vocab; ++i) {
std::string str = llama_detokenize_bpe(ctx, std::vector<int>(1, i)); std::string str = llama_detokenize(ctx, std::vector<int>(1, i));
try { try {
auto cps = unicode_cpts_from_utf8(str); auto cps = unicode_cpts_from_utf8(str);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true); std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
@ -90,7 +94,7 @@ int main(int argc, char **argv) {
fprintf(stderr, "]\n"); fprintf(stderr, "]\n");
return 2; return 2;
} }
std::string check = llama_detokenize_bpe(ctx, tokens); std::string check = llama_detokenize(ctx, tokens);
if (check != str) { if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n", fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length()); __func__, i, str.c_str(), str.length(), check.c_str(), check.length());
@ -108,26 +112,23 @@ int main(int argc, char **argv) {
std::vector<std::thread> threads(nthread); std::vector<std::thread> threads(nthread);
std::atomic_int errcode = {};
for (int i = 0; i < nthread; ++i) { for (int i = 0; i < nthread; ++i) {
threads[i] = std::thread([i, nthread, ctx]() { threads[i] = std::thread([i, nthread, ctx, &errcode]() {
for (uint32_t cp = i; cp < 0x0010ffff; cp += nthread) { for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
if (!( // NOLINT if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
(cp < 0x03 || cp > 0x05) && cp != 0x0b && cp != 0x11 && (0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
(cp < 0x13 || cp > 0x17) && cp != 0x19 &&
(cp < 0x1c || cp > 0x1e) &&
(cp < 0xd800 || cp > 0xdfff) &&
(cp < 0x00040000 || cp >= 0x000e0000)
)) {
continue; continue;
} }
std::string str = unicode_cpt_to_utf8(cp); std::string str = unicode_cpt_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false); std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
std::string check = llama_detokenize_bpe(ctx, tokens); std::string check = llama_detokenize(ctx, tokens);
if (cp != 9601 && str != check) { if (cp != 9601 && str != check) {
fprintf(stderr, "error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n", fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length()); cp, check.c_str(), check.length(), str.c_str(), str.length());
std::exit(3); errcode = 3;
} }
} }
}); });
@ -136,6 +137,10 @@ int main(int argc, char **argv) {
for (auto & t : threads) { for (auto & t : threads) {
t.join(); t.join();
} }
if (errcode) {
return errcode;
}
} }
llama_free_model(model); llama_free_model(model);

View File

@ -11,6 +11,7 @@
#include <string> #include <string>
#include <thread> #include <thread>
#include <vector> #include <vector>
#include <atomic>
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
if (argc < 2) { if (argc < 2) {
@ -51,7 +52,10 @@ int main(int argc, char ** argv) {
} }
} }
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); //GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) {
return 99;
}
#ifdef _WIN32 #ifdef _WIN32
// We need this for unicode console support // We need this for unicode console support
@ -62,9 +66,9 @@ int main(int argc, char ** argv) {
const int n_vocab = llama_n_vocab(model); const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) { for (int i = 0; i < n_vocab; ++i) {
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i)); std::string str = llama_detokenize(ctx, std::vector<int>(1, i), true);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false); std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
std::string check = llama_detokenize_spm(ctx, tokens); std::string check = llama_detokenize(ctx, tokens);
if (check != str) { if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n", fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length()); __func__, i, str.c_str(), str.length(), check.c_str(), check.length());
@ -78,20 +82,23 @@ int main(int argc, char ** argv) {
std::vector<std::thread> threads(nthread); std::vector<std::thread> threads(nthread);
std::atomic_int errcode = {};
for (int i = 0; i < nthread; ++i) { for (int i = 0; i < nthread; ++i) {
threads[i] = std::thread([i, nthread, ctx]() { threads[i] = std::thread([i, nthread, ctx, &errcode]() {
for (uint32_t cp = i; cp < 0x0010ffff; cp += nthread) { for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
if (cp >= 0xd800 && cp <= 0xdfff) { if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
(0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
continue; continue;
} }
std::string str = unicode_cpt_to_utf8(cp); std::string str = unicode_cpt_to_utf8(cp);
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false); std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
std::string check = llama_detokenize_spm(ctx, tokens); std::string check = llama_detokenize(ctx, tokens);
if (cp != 9601 && str != check) { if (cp != 9601 && str != check) {
fprintf(stderr, "error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n", fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length()); cp, check.c_str(), check.length(), str.c_str(), str.length());
std::exit(3); errcode = 3;
} }
} }
}); });
@ -100,6 +107,10 @@ int main(int argc, char ** argv) {
for (auto & t : threads) { for (auto & t : threads) {
t.join(); t.join();
} }
if(errcode) {
return errcode;
}
} }
llama_free_model(model); llama_free_model(model);

View File

@ -13,7 +13,7 @@ import subprocess
import random import random
import unicodedata import unicodedata
from typing import Callable, Iterator from typing import Iterator
import cffi import cffi
from transformers import AutoTokenizer from transformers import AutoTokenizer
@ -24,17 +24,20 @@ logger = logging.getLogger("test-tokenizer-random")
class LibLlama: class LibLlama:
DEFAULT_PATH_LLAMA_H = "./llama.h" DEFAULT_PATH_LLAMA_H = "./include/llama.h"
DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str = None, path_libllama: str = None): def __init__(self, path_llama_h: str = None, path_includes: list[str] = [], path_libllama: str = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama) (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init() self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str): def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str):
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h] cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE) res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0) assert (res.returncode == 0)
source = res.stdout.decode() source = res.stdout.decode()
@ -79,6 +82,7 @@ class LibLlamaModel:
raise RuntimeError("error: failed to create context for model '%s'" % path_model) raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx) n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self): def free(self):
if self.ctx: if self.ctx:
@ -89,14 +93,78 @@ class LibLlamaModel:
self.model = None self.model = None
self.lib = None self.lib = None
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]: def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
text = text.encode("utf-8") text = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special) num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
if num < 0: while num < 0 and len(self.token_ids) < (16 << 20):
return [] self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num]) return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
if len(self.token_ids) < len(ids):
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
for i, id in enumerate(ids):
self.token_ids[i] = id
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
class Tokenizer:
def encode(self, text: str) -> list[int]:
raise NotImplementedError
def decode(self, ids: list[int]) -> str:
raise NotImplementedError
class TokenizerGroundtruth (Tokenizer):
def __init__(self, dir_tokenizer: str):
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
# guess BOS and EOS
ids = self.encode("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
# build vocab
tokens = list(self.model.get_vocab().values())
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
self.vocab = list(sorted(self.vocab))
# tokens and lists
self.special_tokens = list(self.model.all_special_tokens)
self.added_tokens = list(self.model.added_tokens_encoder)
self.bos_token = self.model.bos_token
self.eos_token = self.model.eos_token
def encode(self, text: str) -> list[int]:
return self.model.encode(text, add_special_tokens=True)
def decode(self, ids: list[int]) -> str:
return self.model.decode(ids, skip_special_tokens=False)
class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama = None
def __init__(self, vocab_file: str):
if not self.libllama:
self.libllama = LibLlama()
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
def encode(self, text: str) -> list[int]:
return self.model.tokenize(text, add_special=True, parse_special=True)
def decode(self, ids: list[int]) -> str:
return self.model.detokenize(ids, remove_special=False, unparse_special=True)
def generator_custom_text() -> Iterator[str]: def generator_custom_text() -> Iterator[str]:
"""General tests""" """General tests"""
@ -165,19 +233,48 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
'a </s> b', # rstrip phi-3 'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2 'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek '\xa0aC', # deepseek
'\u2029 \uA3E4', # deepseek-llm
"a ?",
'', # mpt
'\U000ac517', # utf-8 encode error, falcon
'\U000522f4', # utf-8 encode error, starcoder
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
] ]
def generator_vocab_words(vocab: list[str]) -> Iterator[str]: def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words""" """Brute force check all vocab words"""
yield from vocab yield from tokenizer.vocab
def generator_added_lr_strip(tokenizer) -> Iterator[str]: def generator_ascii_lr_strip() -> Iterator[str]:
WHITESPACES = ["", " ", " ", " "] WHITESPACES = ["", " ", " "]
special_tokens = list(tokenizer.all_special_tokens) CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
added_tokens = list(tokenizer.added_tokens_encoder) for char1 in CHARACTERS:
all_tokens = list(sorted(set(special_tokens + added_tokens))) for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + char1 + char2 + rstrip
yield lstrip + char1 + rstrip + char2
yield char1 + lstrip + char2 + rstrip
def generator_apostrophe() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield char1 + lstrip + "'" + rstrip + char2
yield char1 + char2 + lstrip + "'" + rstrip + "z"
yield "a" + lstrip + "'" + rstrip + char1 + char2
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens: for token in all_tokens:
for lstrip in WHITESPACES: for lstrip in WHITESPACES:
for rstrip in WHITESPACES: for rstrip in WHITESPACES:
@ -187,11 +284,9 @@ def generator_added_lr_strip(tokenizer) -> Iterator[str]:
yield "a" + lstrip + token + rstrip + "z" yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]: def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"] separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(special_tokens + added_tokens + separations))) all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random() rand = random.Random()
for m in range(iterations): for m in range(iterations):
rand.seed(m) rand.seed(m)
@ -242,13 +337,13 @@ def generator_unicodes() -> Iterator[str]:
def _valid(cpt): def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplement­ary if cpt >= 0x30000: # unassigned and supplement­ary
return False return False
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates # if cpt == 0x2029: # deepseek-llm
return False # return False
if unicodedata.category(chr(cpt)) == "Cn": if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
return False return False
return True return True
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)] characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters yield from characters
@ -273,11 +368,11 @@ def generator_random_unicodes(iterations=100) -> Iterator[str]:
yield "".join(text) yield "".join(text)
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]: def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters""" """Brute force random text with vocab characters"""
vocab_chars = set() vocab_chars = set()
for word in vocab: for word in tokenizer.vocab:
vocab_chars.update(word) vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars)) vocab_chars = list(sorted(vocab_chars))
@ -288,10 +383,10 @@ def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text) yield "".join(text)
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]: def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words""" """Brute force random text from vocab words"""
vocab = [w.strip() for w in vocab] vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab yield from vocab
rand = random.Random() rand = random.Random()
@ -307,7 +402,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text) yield "".join(text)
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]): def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]): def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a, b) in enumerate(zip(ids1, ids2)): for i, (a, b) in enumerate(zip(ids1, ids2)):
@ -317,34 +412,67 @@ def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, gener
return -1 return -1
return min(len(ids1), len(ids2)) return min(len(ids1), len(ids2))
t_tokenizer1 = 0 def check_detokenizer(text: str, text1: str, text2: str) -> bool:
t_tokenizer2 = 0 if text1 == text2: # equal to TokenizerGroundtruth?
return True
# equal to source text?
if tokenizer1.add_bos_token: # remove BOS
if text2.startswith(tokenizer1.bos_token):
text2 = text2[len(tokenizer1.bos_token):]
if tokenizer1.add_eos_token: # remove EOS
if text2.endswith(tokenizer1.eos_token):
text2 = text2[:-len(tokenizer1.eos_token)]
return text == text2
t_encode1 = 0
t_encode2 = 0
t_decode1 = 0
t_decode2 = 0
t_start = time.perf_counter() t_start = time.perf_counter()
num_errors = 10 encode_errors = 0
decode_errors = 0
MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__name__, "ini")) logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator: for text in generator:
# print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode()) # print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter() t0 = time.perf_counter()
ids1 = func_tokenize1(text) ids1 = tokenizer1.encode(text)
t1 = time.perf_counter() t1 = time.perf_counter()
ids2 = func_tokenize2(text) ids2 = tokenizer2.encode(text)
t2 = time.perf_counter() t2 = time.perf_counter()
t_tokenizer1 += t1 - t0 text1 = tokenizer1.decode(ids1)
t_tokenizer2 += t2 - t1 t3 = time.perf_counter()
if ids1 != ids2: text2 = tokenizer2.decode(ids1)
t4 = time.perf_counter()
t_encode1 += t1 - t0
t_encode2 += t2 - t1
t_decode1 += t3 - t2
t_decode2 += t4 - t3
if encode_errors < MAX_ERRORS and ids1 != ids2:
i = find_first_mismatch(ids1, ids2) i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1] ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1] ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" TokenIDs: " + str(ids1)) logger.error(" Expected: " + str(ids1))
logger.error(" Expected: " + str(ids2)) logger.error(" Result: " + str(ids2))
encode_errors += 1
logger.error(f" {encode_errors=}")
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
i = find_first_mismatch(text1, text2)
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
decode_errors += 1
logger.error(f" {decode_errors=}")
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
# raise Exception() # raise Exception()
num_errors += 1
if num_errors > 10:
break break
t_total = time.perf_counter() - t_start t_total = time.perf_counter() - t_start
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total)) logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] = None): def main(argv: list[str] = None):
@ -357,41 +485,29 @@ def main(argv: list[str] = None):
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO) logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'") logger.info(f"VOCABFILE: '{args.vocab_file}'")
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
def func_tokenize1(text: str): # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
return model.tokenize(text, add_special=True, parse_special=True) # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
def func_tokenize2(text: str): tokenizer2.model.free()
return tokenizer.encode(text, add_special_tokens=True)
ids = func_tokenize2("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
model.free()
if __name__ == "__main__": if __name__ == "__main__":
# main() # main()
if True:
logging.basicConfig( logging.basicConfig(
level = logging.DEBUG, level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
@ -399,32 +515,46 @@ if __name__ == "__main__":
filename = logger.name + ".log", filename = logger.name + ".log",
filemode = "a" filemode = "a"
) )
logging.basicConfig(
level = logging.DEBUG,
format = "%(levelname)s %(message)s",
)
path_tokenizers = "./models/tokenizers/" path_tokenizers = "./models/tokenizers/"
path_vocab_format = "./models/ggml-vocab-%s.gguf" path_vocab_format = "./models/ggml-vocab-%s.gguf"
# import os
# tokenizers = os.listdir(path_tokenizers)
tokenizers = [ tokenizers = [
# "llama-spm", # SPM "llama-spm", # SPM
# "phi-3", # SPM "phi-3", # SPM
# "bert-bge", # WPM "gemma", # SPM
# "jina-v2-en", # WPM "gemma-2", # SPM
"gpt-2", # BPE "baichuan", # SPM
"bert-bge", # WPM
"jina-v2-en", # WPM
"llama-bpe", # BPE "llama-bpe", # BPE
"phi-2", # BPE
"deepseek-llm", # BPE
"deepseek-coder", # BPE
"falcon", # BPE "falcon", # BPE
"mpt", # BPE
"starcoder", # BPE "starcoder", # BPE
"gpt-2", # BPE
"stablelm2", # BPE
"refact", # BPE
"qwen2", # BPE
"olmo", # BPE
"jina-v2-es", # BPE "jina-v2-es", # BPE
"jina-v2-de", # BPE "jina-v2-de", # BPE
"jina-v2-code", # BPE
"smaug-bpe", # BPE "smaug-bpe", # BPE
"phi-2", # BPE "poro-chat", # BPE
"deepseek-coder", # BPE "jina-v2-code", # BPE
"deepseek-llm", # BPE "viking", # BPE
"jais", # BPE
] ]
for tokenizer in tokenizers:
logger.info("=" * 50) logger.info("=" * 50)
for tokenizer in tokenizers:
logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'") logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer vocab_file = path_vocab_format % tokenizer
dir_tokenizer = path_tokenizers + "/" + tokenizer dir_tokenizer = path_tokenizers + "/" + tokenizer