ggml : adjust mul_mat_f16 work memory (#1226)

* llama : minor - remove explicity int64_t cast

* ggml : reduce memory buffer for F16 mul_mat when not using cuBLAS

* ggml : add asserts to guard for incorrect wsize
This commit is contained in:
Georgi Gerganov 2023-04-29 18:43:28 +03:00 committed by GitHub
parent 305eb5afd5
commit 214b6a3570
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 23 additions and 9 deletions

View File

@ -34,10 +34,15 @@ endif
# #
# keep standard at C11 and C++11 # keep standard at C11 and C++11
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC CFLAGS = -I. -O3 -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
LDFLAGS = LDFLAGS =
ifndef LLAMA_DEBUG
CFLAGS += -DNDEBUG
CXXFLAGS += -DNDEBUG
endif
# warnings # warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar

21
ggml.c
View File

@ -8245,8 +8245,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#else
float * const wdata = params->wdata;
#endif #endif
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
@ -8263,8 +8261,11 @@ static void ggml_compute_forward_mul_mat_f16_f32(
wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10)); wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
} }
} }
assert(id*sizeof(ggml_fp16_t) <= params->wsize);
} }
#else #else
float * const wdata = params->wdata;
{ {
size_t id = 0; size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) { for (int64_t i01 = 0; i01 < ne01; ++i01) {
@ -8272,6 +8273,8 @@ static void ggml_compute_forward_mul_mat_f16_f32(
wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00)); wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
} }
} }
assert(id*sizeof(float) <= params->wsize);
} }
#endif #endif
@ -8537,7 +8540,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
id += ne00; id += ne00;
} }
assert(id*sizeof(float) <= params->wsize);
} }
const float * x = wdata; const float * x = wdata;
#endif #endif
@ -11571,10 +11577,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning // the threads are still spinning
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0)); #if defined(GGML_USE_CUBLAS)
//printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]); // with cuBLAS, we need memory for the full 3D / 4D data of src1
//printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]); cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
//printf("cur = %zu\n", cur); #else
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
#endif
} else { } else {
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
} }

View File

@ -780,7 +780,7 @@ static bool kv_cache_init(
const int n_embd = hparams.n_embd; const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer; const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem; const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);