mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
rpc : fix load/store misaligned addresses (#7948)
This commit is contained in:
parent
006167aaf6
commit
21be9cab94
11
ggml-rpc.cpp
11
ggml-rpc.cpp
@ -73,9 +73,13 @@ struct rpc_tensor {
|
|||||||
uint64_t view_offs;
|
uint64_t view_offs;
|
||||||
uint64_t data;
|
uint64_t data;
|
||||||
char name[GGML_MAX_NAME];
|
char name[GGML_MAX_NAME];
|
||||||
|
|
||||||
|
char padding[4];
|
||||||
};
|
};
|
||||||
#pragma pack(pop)
|
#pragma pack(pop)
|
||||||
|
|
||||||
|
static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
|
||||||
|
|
||||||
// RPC commands
|
// RPC commands
|
||||||
enum rpc_cmd {
|
enum rpc_cmd {
|
||||||
ALLOC_BUFFER = 0,
|
ALLOC_BUFFER = 0,
|
||||||
@ -599,9 +603,8 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
|
|||||||
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
||||||
output.resize(output_size, 0);
|
output.resize(output_size, 0);
|
||||||
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
|
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
|
||||||
uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
|
|
||||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||||
out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
|
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
|
||||||
}
|
}
|
||||||
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
|
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
|
||||||
*out_ntensors = n_tensors;
|
*out_ntensors = n_tensors;
|
||||||
@ -1036,7 +1039,9 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<u
|
|||||||
}
|
}
|
||||||
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
|
||||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||||
graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
|
int64_t id;
|
||||||
|
memcpy(&id, &nodes[i], sizeof(id));
|
||||||
|
graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
|
||||||
}
|
}
|
||||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||||
// output serialization format: | status (1 byte) |
|
// output serialization format: | status (1 byte) |
|
||||||
|
Loading…
Reference in New Issue
Block a user