llama : use vectors and avoid has_cache

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-05-29 20:56:52 +03:00
parent 9964cd02f7
commit 21ccd645df
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

View File

@ -2163,11 +2163,9 @@ struct llama_vocab {
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
bool has_cache = false;
std::vector<id> cache_special_tokens;
std::unordered_map<id, token> cache_token_to_piece; // llama_token_to_piece(special = false);
std::unordered_map<id, token> cache_token_to_piece_special; // llama_token_to_piece(special = true);
std::vector<id> cache_special_tokens;
std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = false);
std::vector<token> cache_token_to_piece_special; // llama_token_to_piece(special = true);
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
@ -4852,12 +4850,18 @@ static void llm_load_vocab(
}
// build token to piece caches
for (llama_token id = 0; id < (llama_token) n_vocab; ++id) {
vocab.cache_token_to_piece[id] = llama_token_to_piece(&model, id, false);
vocab.cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true);
}
{
std::vector<llama_vocab::token> cache_token_to_piece (n_vocab);
std::vector<llama_vocab::token> cache_token_to_piece_special(n_vocab);
vocab.has_cache = true;
for (uint32_t id = 0; id < n_vocab; ++id) {
cache_token_to_piece[id] = llama_token_to_piece(&model, id, false);
cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true);
}
std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
std::swap(vocab.cache_token_to_piece_special, cache_token_to_piece_special);
}
}
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
@ -14417,7 +14421,8 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
candidates_decoded.reserve(candidates->size);
std::vector<llama_grammar_candidate> candidates_grammar;
std::vector<llama_grammar_candidate> candidates_grammar;
candidates_grammar.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
@ -18305,14 +18310,18 @@ static std::string llama_decode_text(const std::string & text) {
// does not write null-terminator to buf
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
if (model->vocab.has_cache) {
// if we have a cache - use it
{
const auto & cache = special ? model->vocab.cache_token_to_piece_special : model->vocab.cache_token_to_piece;
const auto & res = cache.at(token);
if (length < (int) res.size()) {
return -(int) res.size();
if (!cache.empty()) {
const auto & res = cache.at(token);
if (length < (int) res.size()) {
return -(int) res.size();
}
memcpy(buf, res.c_str(), res.size());
return res.size();
}
memcpy(buf, res.c_str(), res.size());
return res.size();
}
if (0 <= token && token < llama_n_vocab(model)) {