llama-bench : add no-kv-offload parameter (#4812)

This commit is contained in:
slaren 2024-01-07 17:59:01 +01:00 committed by GitHub
parent d5a410e855
commit 226460cc0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -138,6 +138,7 @@ struct cmd_params {
std::vector<int> n_threads; std::vector<int> n_threads;
std::vector<int> n_gpu_layers; std::vector<int> n_gpu_layers;
std::vector<int> main_gpu; std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q; std::vector<bool> mul_mat_q;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split; std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
int reps; int reps;
@ -155,6 +156,7 @@ static const cmd_params cmd_params_defaults = {
/* n_threads */ {get_num_physical_cores()}, /* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99}, /* n_gpu_layers */ {99},
/* main_gpu */ {0}, /* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true}, /* mul_mat_q */ {true},
/* tensor_split */ {{}}, /* tensor_split */ {{}},
/* reps */ 5, /* reps */ 5,
@ -176,6 +178,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> \n"); printf(" -ts, --tensor_split <ts0/ts1/..> \n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps); printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
@ -309,6 +312,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break; break;
} }
params.main_gpu = split<int>(argv[i], split_delim); params.main_gpu = split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") { } else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -383,6 +393,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; } if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
@ -400,6 +411,7 @@ struct cmd_params_instance {
int n_threads; int n_threads;
int n_gpu_layers; int n_gpu_layers;
int main_gpu; int main_gpu;
bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split; std::array<float, LLAMA_MAX_DEVICES> tensor_split;
@ -428,6 +440,7 @@ struct cmd_params_instance {
cparams.type_k = type_k; cparams.type_k = type_k;
cparams.type_v = type_v; cparams.type_v = type_v;
cparams.mul_mat_q = mul_mat_q; cparams.mul_mat_q = mul_mat_q;
cparams.offload_kqv = !no_kv_offload;
return cparams; return cparams;
} }
@ -444,6 +457,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
for (const auto & tk : params.type_k) for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v) for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q) for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) { for (const auto & nt : params.n_threads) {
cmd_params_instance instance = { cmd_params_instance instance = {
/* .model = */ m, /* .model = */ m,
@ -455,6 +469,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
/* .n_threads = */ nt, /* .n_threads = */ nt,
/* .n_gpu_layers = */ nl, /* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq, /* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts, /* .tensor_split = */ ts,
}; };
@ -476,6 +491,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & tk : params.type_k) for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v) for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q) for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) { for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) { for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) { if (n_prompt == 0) {
@ -491,6 +507,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_threads = */ nt, /* .n_threads = */ nt,
/* .n_gpu_layers = */ nl, /* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq, /* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts, /* .tensor_split = */ ts,
}; };
@ -511,6 +528,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_threads = */ nt, /* .n_threads = */ nt,
/* .n_gpu_layers = */ nl, /* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg, /* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq, /* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts, /* .tensor_split = */ ts,
}; };
@ -559,6 +577,7 @@ struct test {
ggml_type type_v; ggml_type type_v;
int n_gpu_layers; int n_gpu_layers;
int main_gpu; int main_gpu;
bool no_kv_offload;
bool mul_mat_q; bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split; std::array<float, LLAMA_MAX_DEVICES> tensor_split;
int n_prompt; int n_prompt;
@ -579,6 +598,7 @@ struct test {
type_v = inst.type_v; type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers; n_gpu_layers = inst.n_gpu_layers;
main_gpu = inst.main_gpu; main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q; mul_mat_q = inst.mul_mat_q;
tensor_split = inst.tensor_split; tensor_split = inst.tensor_split;
n_prompt = inst.n_prompt; n_prompt = inst.n_prompt;
@ -640,7 +660,8 @@ struct test {
"cpu_info", "gpu_info", "cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params", "model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "type_k", "type_v", "n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split", "n_gpu_layers", "main_gpu", "no_kv_offload",
"mul_mat_q", "tensor_split",
"n_prompt", "n_gen", "test_time", "n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns", "avg_ns", "stddev_ns",
"avg_ts", "stddev_ts" "avg_ts", "stddev_ts"
@ -659,7 +680,7 @@ struct test {
return INT; return INT;
} }
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" || if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
field == "f16_kv" || field == "mul_mat_q") { field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
return BOOL; return BOOL;
} }
if (field == "avg_ts" || field == "stddev_ts") { if (field == "avg_ts" || field == "stddev_ts") {
@ -690,7 +711,8 @@ struct test {
cpu_info, gpu_info, cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v), std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str, std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(no_kv_offload),
std::to_string(mul_mat_q), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts()) std::to_string(avg_ts()), std::to_string(stdev_ts())
@ -851,6 +873,9 @@ struct markdown_printer : public printer {
if (field == "mul_mat_q") { if (field == "mul_mat_q") {
return "mmq"; return "mmq";
} }
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "tensor_split") { if (field == "tensor_split") {
return "ts"; return "ts";
} }
@ -885,6 +910,9 @@ struct markdown_printer : public printer {
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q"); fields.push_back("mul_mat_q");
} }
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.push_back("no_kv_offload");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.push_back("tensor_split"); fields.push_back("tensor_split");
} }