refactor: Improve code organization, argument parsing, and user interface

- Renamed 'default_outfile' to 'default_output_file' for clarity.
- Refactored argument parser setup into 'get_argument_parser' function.
- Introduced descriptive comments for each argument in the parser.
- Added '--vocab-type' argument with choices ["spm", "bpe", "hfft"] for vocabulary processing.
- Improved flag naming consistency: '--outfile' to '--out-file' and '--bigendian' to '--big-endian'.
- Enhanced error handling to prevent overwriting input data in 'default_output_file'.
- Made 'argv' in 'main' an optional parameter for flexibility.
- Introduced dynamic import for 'awq.apply_awq' based on 'args.awq_path' for conditional dependency.

These changes enhance code clarity, organization, and the user interface of the script, aligning it with Python best practices and improving maintainability.
This commit is contained in:
teleprint-me 2024-01-07 21:42:58 -05:00
parent 8aa5818a20
commit 226cea270e
No known key found for this signature in database
GPG Key ID: B0D11345E65C4D48

View File

@ -1432,7 +1432,7 @@ class VocabFactory:
return vocab, special_vocab return vocab, special_vocab
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path:
namestr = { namestr = {
GGMLFileType.AllF32: "f32", GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16", GGMLFileType.MostlyF16: "f16",
@ -1442,7 +1442,8 @@ def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
if ret in model_paths: if ret in model_paths:
sys.stderr.write( sys.stderr.write(
f"Error: Default output path ({ret}) would overwrite the input. " f"Error: Default output path ({ret}) would overwrite the input. "
"Please explicitly specify a path using --outfile.\n") "Please explicitly specify a path using --out-file.\n"
)
sys.exit(1) sys.exit(1)
return ret return ret
@ -1452,29 +1453,107 @@ def do_dump_model(model_plus: ModelPlus) -> None:
print(f"model_plus.format = {model_plus.format!r}") print(f"model_plus.format = {model_plus.format!r}")
print(f"model_plus.vocab = {model_plus.vocab!r}") print(f"model_plus.vocab = {model_plus.vocab!r}")
for name, lazy_tensor in model_plus.model.items(): for name, lazy_tensor in model_plus.model.items():
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") print(
f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}"
)
def main(args_in: list[str] | None = None) -> None: def get_argument_parser() -> ArgumentParser:
output_choices = ["f32", "f16"] output_choices = ["f32", "f16"]
if np.uint32(1) == np.uint32(1).newbyteorder("<"): if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems. # We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0") output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
args = parser.parse_args(args_in) parser = argparse.ArgumentParser(
description="Convert a LLaMa model to a GGML compatible file"
)
parser.add_argument(
"model",
type=Path,
help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)",
)
parser.add_argument(
"--awq-path",
type=Path,
help="Path to the Activation-aware Weight Quantization cache file",
default=None,
)
parser.add_argument(
"--dump",
action="store_true",
help="Display the model content without converting it",
)
parser.add_argument(
"--dump-single",
action="store_true",
help="Display the content of a single model file without conversion",
)
parser.add_argument(
"--vocab-only",
action="store_true",
help="Extract and output only the vocabulary",
)
parser.add_argument(
"--out-type",
choices=output_choices,
help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)",
)
parser.add_argument(
"--vocab-dir",
type=Path,
help="Directory containing the tokenizer.model, if separate from the model file",
)
parser.add_argument(
"--vocab-type",
choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer
default="spm",
help="The vocabulary format used to define the tokenizer model (default: spm)",
)
parser.add_argument(
"--pad-vocab",
action="store_true",
help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata",
)
parser.add_argument(
"--out-file",
type=Path,
help="Specify the path for the output file (default is based on input)",
)
parser.add_argument(
"--ctx", type=int, help="Model training context (default is based on input)"
)
parser.add_argument(
"--concurrency",
type=int,
help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})",
default=DEFAULT_CONCURRENCY,
)
parser.add_argument(
"--big-endian",
action="store_true",
help="Indicate that the model is executed on a big-endian machine",
)
return parser
def main(argv: Optional[list[str]] = None) -> None:
parser = get_argument_parser()
args = parser.parse_args(argv)
if args.awq_path: if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights from awq.apply_awq import add_scale_weights