mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
examples : update llama2.c converter to read vocab and write models in GGUF format (#2751)
* llama2.c: direct gguf output (WIP) * Simplify vector building logic * llama2.c gguf conversion: fix token types in converter * llama2.c: support copying vocab from a llama gguf model file * llama2.c: update default path for vocab model + readme * llama2.c: use defines for gguf keys * llama2.c: escape whitespaces w/ U+2581 in vocab converter the llama.cpp way * llama2.c converter: cleanups + take n_ff from config
This commit is contained in:
parent
463173a6c0
commit
230d46c723
@ -12,18 +12,14 @@ usage: ./convert-llama2c-to-ggml [options]
|
|||||||
|
|
||||||
options:
|
options:
|
||||||
-h, --help show this help message and exit
|
-h, --help show this help message and exit
|
||||||
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
|
--copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default 'models/7B/ggml-model-f16.gguf')
|
||||||
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||||
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||||
```
|
```
|
||||||
|
|
||||||
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
|
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
|
||||||
|
|
||||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin`
|
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||||
|
|
||||||
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
|
|
||||||
|
|
||||||
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
|
|
||||||
|
|
||||||
Now you can use the model with a command like:
|
Now you can use the model with a command like:
|
||||||
|
|
||||||
|
@ -10,9 +10,48 @@
|
|||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <random>
|
#include <random>
|
||||||
#include <stdexcept>
|
#include <stdexcept>
|
||||||
|
#include <sstream>
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
|
||||||
|
// GGUF keys & tensor names.
|
||||||
|
|
||||||
|
#define KV_GENERAL_ARCHITECTURE "general.architecture"
|
||||||
|
#define KV_GENERAL_NAME "general.name"
|
||||||
|
|
||||||
|
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
|
||||||
|
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
|
||||||
|
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
|
||||||
|
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
|
||||||
|
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
|
||||||
|
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
|
||||||
|
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
|
||||||
|
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
|
||||||
|
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
|
||||||
|
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
|
||||||
|
|
||||||
|
#define KV_CONTEXT_LENGTH "llama.context_length"
|
||||||
|
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
|
||||||
|
#define KV_BLOCK_COUNT "llama.block_count"
|
||||||
|
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
|
||||||
|
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
|
||||||
|
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
|
||||||
|
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
|
||||||
|
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
|
||||||
|
|
||||||
|
#define TN_TOKEN_EMBD "token_embd.weight"
|
||||||
|
#define TN_OUTPUT_NORM "output_norm.weight"
|
||||||
|
#define TN_OUTPUT "output.weight"
|
||||||
|
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
||||||
|
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
||||||
|
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
||||||
|
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
||||||
|
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
||||||
|
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
||||||
|
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
||||||
|
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
||||||
|
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
#if defined(_MSC_VER)
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
@ -20,6 +59,11 @@
|
|||||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||||
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
||||||
|
|
||||||
|
#define TOKENIZER_NAME "llama"
|
||||||
|
#define UNKNOWN_TOKEN_ID 0
|
||||||
|
#define BOS_TOKEN_ID 1
|
||||||
|
#define EOS_TOKEN_ID 2
|
||||||
|
|
||||||
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||||
typedef struct {
|
typedef struct {
|
||||||
int dim; // transformer dimension
|
int dim; // transformer dimension
|
||||||
@ -183,6 +227,7 @@ struct my_llama_hparams {
|
|||||||
uint32_t n_vocab = 32000;
|
uint32_t n_vocab = 32000;
|
||||||
uint32_t n_ctx = 512; // this is provided as user input?
|
uint32_t n_ctx = 512; // this is provided as user input?
|
||||||
uint32_t n_embd = 4096;
|
uint32_t n_embd = 4096;
|
||||||
|
uint32_t n_ff = 11008;
|
||||||
uint32_t n_mult = 4;
|
uint32_t n_mult = 4;
|
||||||
uint32_t n_head = 32;
|
uint32_t n_head = 32;
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_layer = 32;
|
||||||
@ -214,6 +259,8 @@ struct my_llama_layer {
|
|||||||
struct my_llama_model {
|
struct my_llama_model {
|
||||||
struct ggml_context * ctx = NULL;
|
struct ggml_context * ctx = NULL;
|
||||||
|
|
||||||
|
std::string name;
|
||||||
|
|
||||||
my_llama_hparams hparams;
|
my_llama_hparams hparams;
|
||||||
|
|
||||||
struct ggml_tensor * tok_embeddings;
|
struct ggml_tensor * tok_embeddings;
|
||||||
@ -276,18 +323,13 @@ struct train_params {
|
|||||||
int mem_compute1_gb;
|
int mem_compute1_gb;
|
||||||
};
|
};
|
||||||
|
|
||||||
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
|
|
||||||
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
|
|
||||||
return n_ff;
|
|
||||||
}
|
|
||||||
|
|
||||||
void print_params(struct my_llama_hparams * params) {
|
void print_params(struct my_llama_hparams * params) {
|
||||||
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||||
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||||
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||||
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||||
printf("%s: n_head: %d\n", __func__, params->n_head);
|
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||||
printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
|
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
||||||
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||||
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||||
}
|
}
|
||||||
@ -299,7 +341,7 @@ void init_model(struct my_llama_model * model) {
|
|||||||
const uint32_t n_layer = hparams.n_layer;
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
const uint32_t n_vocab = hparams.n_vocab;
|
const uint32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
const uint32_t n_ff = get_n_ff(&hparams);
|
const uint32_t n_ff = hparams.n_ff;
|
||||||
struct ggml_context * ctx = model->ctx;
|
struct ggml_context * ctx = model->ctx;
|
||||||
|
|
||||||
model->train_its = 0;
|
model->train_its = 0;
|
||||||
@ -481,21 +523,6 @@ struct llama_file {
|
|||||||
return std::string(chars.data(), len);
|
return std::string(chars.data(), len);
|
||||||
}
|
}
|
||||||
|
|
||||||
void write_raw(const void * ptr, size_t size) {
|
|
||||||
if (size == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
errno = 0;
|
|
||||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
|
||||||
if (ret != 1) {
|
|
||||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void write_u32(std::uint32_t val) {
|
|
||||||
write_raw(&val, sizeof(val));
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_file() {
|
~llama_file() {
|
||||||
if (fp) {
|
if (fp) {
|
||||||
std::fclose(fp);
|
std::fclose(fp);
|
||||||
@ -503,30 +530,6 @@ struct llama_file {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
|
||||||
if (tensor == NULL) {
|
|
||||||
file->write_u32(0);
|
|
||||||
file->write_u32(0);
|
|
||||||
file->write_u32(GGML_TYPE_F32);
|
|
||||||
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const char * name = ggml_get_name(tensor);
|
|
||||||
uint32_t name_len = strlen(name);
|
|
||||||
uint32_t nd = tensor->n_dims;
|
|
||||||
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
|
|
||||||
(uint32_t)tensor->ne[1],
|
|
||||||
(uint32_t)tensor->ne[2],
|
|
||||||
(uint32_t)tensor->ne[3] };
|
|
||||||
file->write_u32(nd);
|
|
||||||
file->write_u32(name_len);
|
|
||||||
file->write_u32(tensor->type);
|
|
||||||
file->write_raw(ne, sizeof(ne[0]) * nd);
|
|
||||||
file->write_raw(name, name_len);
|
|
||||||
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
|
||||||
file->write_raw(tensor->data, ggml_nbytes(tensor));
|
|
||||||
}
|
|
||||||
|
|
||||||
bool is_ggml_file(const char *filename) {
|
bool is_ggml_file(const char *filename) {
|
||||||
llama_file file(filename, "rb");
|
llama_file file(filename, "rb");
|
||||||
if (file.size < 4) {
|
if (file.size < 4) {
|
||||||
@ -536,48 +539,96 @@ bool is_ggml_file(const char *filename) {
|
|||||||
return magic == GGUF_MAGIC;
|
return magic == GGUF_MAGIC;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static std::string llama_escape_whitespaces(const std::string& text) {
|
||||||
|
std::ostringstream out;
|
||||||
|
for (char c : text) {
|
||||||
|
if (c == ' ') out << "\xe2\x96\x81";
|
||||||
|
else out << c;
|
||||||
|
}
|
||||||
|
return out.str();
|
||||||
|
}
|
||||||
|
|
||||||
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||||
#pragma message("TODO: implement reading vocabulary using gguf")
|
if (is_ggml_file(filename)) {
|
||||||
// // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
struct ggml_context * ctx_data = NULL;
|
||||||
// if (is_ggml_file(filename)) {
|
|
||||||
//
|
struct gguf_init_params params = {
|
||||||
// struct llama_context_params llama_params = llama_context_default_params();
|
/*.no_alloc = */ false,
|
||||||
// llama_params.vocab_only = true;
|
/*.ctx = */ &ctx_data,
|
||||||
//
|
};
|
||||||
// struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
|
||||||
// struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
struct gguf_context * ctx = gguf_init_from_file(filename, params);
|
||||||
//
|
GGML_ASSERT(ctx != NULL);
|
||||||
// const int n_vocab = llama_n_vocab(lctx);
|
|
||||||
// vocab->id_to_token.resize(n_vocab);
|
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
|
||||||
// for (int i=0; i<n_vocab; ++i) {
|
GGML_ASSERT(model_idx >= 0);
|
||||||
// vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
|
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
|
||||||
// vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
|
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
|
||||||
// vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
|
|
||||||
// vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
|
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
|
||||||
// }
|
GGML_ASSERT(token_idx >= 0);
|
||||||
// llama_free(lctx);
|
|
||||||
// llama_free_model(lmodel);
|
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
|
||||||
// } else
|
GGML_ASSERT(score_idx >= 0);
|
||||||
{ // assume llama2.c vocabulary
|
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
||||||
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
|
|
||||||
|
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
|
||||||
|
GGML_ASSERT(toktype_idx >= 0);
|
||||||
|
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||||
|
|
||||||
|
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||||
|
|
||||||
|
vocab->id_to_token.resize(n_vocab);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
|
std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
||||||
|
|
||||||
|
vocab->token_to_id[word] = i;
|
||||||
|
|
||||||
|
auto & token_data = vocab->id_to_token[i];
|
||||||
|
token_data.text = std::move(word);
|
||||||
|
token_data.score = scores[i];
|
||||||
|
token_data.type = (llama_token_type) toktypes[i];
|
||||||
|
}
|
||||||
|
ggml_free(ctx_data);
|
||||||
|
gguf_free(ctx);
|
||||||
|
} else {
|
||||||
|
// assume llama2.c vocabulary
|
||||||
|
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||||
llama_file file(filename, "rb");
|
llama_file file(filename, "rb");
|
||||||
const int n_vocab = config->vocab_size;
|
const int n_vocab = config->vocab_size;
|
||||||
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||||
vocab->id_to_token.resize(n_vocab);
|
vocab->id_to_token.resize(n_vocab);
|
||||||
for (int i=0; i<n_vocab; ++i) {
|
for (llama_vocab::id id=0; id<n_vocab; ++id) {
|
||||||
float_t score = file.read_f32();
|
float_t score = file.read_f32();
|
||||||
uint32_t len = file.read_u32();
|
uint32_t len = file.read_u32();
|
||||||
std::string text = file.read_string(len);
|
std::string text = file.read_string(len);
|
||||||
// Special-case handling of <0xXX> single byte tokens.
|
|
||||||
char byte_val;
|
unsigned char byte_val;
|
||||||
if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
|
||||||
char cstr[2] = { byte_val, 0 };
|
if (id == UNKNOWN_TOKEN_ID) {
|
||||||
text = cstr;
|
text = "<unk>";
|
||||||
|
type = LLAMA_TOKEN_TYPE_UNKNOWN;
|
||||||
|
} else if (id == BOS_TOKEN_ID) {
|
||||||
|
text = "<s>";
|
||||||
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||||
|
} else if (id == EOS_TOKEN_ID) {
|
||||||
|
text = "</s>";
|
||||||
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||||
|
} else if (text.empty()) {
|
||||||
|
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||||
|
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
||||||
|
// Text of byte tokens is already in the expected format.
|
||||||
|
type = LLAMA_TOKEN_TYPE_BYTE;
|
||||||
|
} else {
|
||||||
|
type = LLAMA_TOKEN_TYPE_NORMAL;
|
||||||
}
|
}
|
||||||
vocab->id_to_token[i].text = text;
|
text = llama_escape_whitespaces(text);
|
||||||
vocab->id_to_token[i].score = score;
|
|
||||||
vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
|
vocab->id_to_token[id].text = text;
|
||||||
vocab->token_to_id.emplace(text, i);
|
vocab->id_to_token[id].score = score;
|
||||||
|
vocab->id_to_token[id].type = type;
|
||||||
|
vocab->token_to_id.emplace(text, id);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -619,33 +670,6 @@ void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * kar
|
|||||||
}
|
}
|
||||||
|
|
||||||
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
||||||
struct llama_file file(filename, "wb");
|
|
||||||
if (file.fp == NULL) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
#pragma message("TODO: implement file saving using gguf")
|
|
||||||
// write_magic
|
|
||||||
file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
|
|
||||||
file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
|
|
||||||
// write_hparams
|
|
||||||
file.write_u32(model->hparams.n_vocab);
|
|
||||||
file.write_u32(model->hparams.n_embd);
|
|
||||||
file.write_u32(model->hparams.n_mult);
|
|
||||||
file.write_u32(model->hparams.n_head);
|
|
||||||
file.write_u32(model->hparams.n_layer);
|
|
||||||
file.write_u32(model->hparams.n_rot);
|
|
||||||
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
|
||||||
|
|
||||||
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
|
||||||
uint32_t n_vocab = model->hparams.n_vocab;
|
|
||||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
|
||||||
const auto & token_data = vocab->id_to_token.at(i);
|
|
||||||
file.write_u32((uint32_t) token_data.text.size());
|
|
||||||
file.write_raw(token_data.text.data(), token_data.text.size());
|
|
||||||
file.write_raw(&token_data.score, sizeof(token_data.score));
|
|
||||||
}
|
|
||||||
|
|
||||||
// stuff AK weights into GG weights one by one.
|
// stuff AK weights into GG weights one by one.
|
||||||
// w->token_embedding_table -> model->tok_embeddings
|
// w->token_embedding_table -> model->tok_embeddings
|
||||||
// float* -> struct ggml_tensor
|
// float* -> struct ggml_tensor
|
||||||
@ -658,8 +682,7 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
|||||||
// for rms-att-weight
|
// for rms-att-weight
|
||||||
int row_length = model->hparams.n_embd;
|
int row_length = model->hparams.n_embd;
|
||||||
const auto & hparams = model->hparams;
|
const auto & hparams = model->hparams;
|
||||||
//int n_ff = model->hparams.n_embd;
|
int n_ff = model->hparams.n_ff;
|
||||||
int n_ff = get_n_ff(&hparams);
|
|
||||||
|
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||||
auto & layer = model->layers[i];
|
auto & layer = model->layers[i];
|
||||||
@ -677,28 +700,91 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
|||||||
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||||
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct gguf_context * ctx = gguf_init_empty();
|
||||||
|
|
||||||
|
std::vector<const char*> tokens;
|
||||||
|
std::vector<float> scores;
|
||||||
|
std::vector<llama_token_type> token_types;
|
||||||
|
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
|
||||||
|
tokens.push_back(token_data.text.c_str());
|
||||||
|
scores.push_back(token_data.score);
|
||||||
|
token_types.push_back(token_data.type);
|
||||||
|
}
|
||||||
|
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
|
||||||
|
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
|
||||||
|
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
|
||||||
|
|
||||||
|
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
|
||||||
|
|
||||||
|
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
|
||||||
|
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
|
||||||
|
|
||||||
|
// special tokens
|
||||||
|
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
|
||||||
|
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
|
||||||
|
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
|
||||||
|
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
|
||||||
|
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
|
||||||
|
|
||||||
|
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
|
||||||
|
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||||
|
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||||
|
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||||
|
// n_head_kv is optional, default to n_head
|
||||||
|
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
||||||
|
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||||
|
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||||
|
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||||
|
|
||||||
// write tensors
|
// write tensors
|
||||||
write_tensor(&file, model->tok_embeddings);
|
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
|
||||||
write_tensor(&file, model->norm);
|
gguf_add_tensor(ctx, model->tok_embeddings);
|
||||||
write_tensor(&file, model->output); // ?
|
|
||||||
|
ggml_set_name(model->norm, TN_OUTPUT_NORM);
|
||||||
|
gguf_add_tensor(ctx, model->norm);
|
||||||
|
|
||||||
|
ggml_set_name(model->output, TN_OUTPUT);
|
||||||
|
gguf_add_tensor(ctx, model->output);
|
||||||
|
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||||
auto & layer = model->layers[i];
|
auto & layer = model->layers[i];
|
||||||
|
|
||||||
write_tensor(&file, layer.attention_norm);
|
ggml_format_name(layer.wq, TN_ATTN_Q, i);
|
||||||
write_tensor(&file, layer.wq);
|
gguf_add_tensor(ctx, layer.wq);
|
||||||
write_tensor(&file, layer.wk);
|
|
||||||
write_tensor(&file, layer.wv);
|
ggml_format_name(layer.wk, TN_ATTN_K, i);
|
||||||
write_tensor(&file, layer.wo);
|
gguf_add_tensor(ctx, layer.wk);
|
||||||
write_tensor(&file, layer.ffn_norm);
|
|
||||||
write_tensor(&file, layer.w1);
|
ggml_format_name(layer.wv, TN_ATTN_V, i);
|
||||||
write_tensor(&file, layer.w2);
|
gguf_add_tensor(ctx, layer.wv);
|
||||||
write_tensor(&file, layer.w3);
|
|
||||||
|
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
|
||||||
|
gguf_add_tensor(ctx, layer.wo);
|
||||||
|
|
||||||
|
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
|
||||||
|
gguf_add_tensor(ctx, layer.attention_norm);
|
||||||
|
|
||||||
|
ggml_format_name(layer.w1, TN_FFN_GATE, i);
|
||||||
|
gguf_add_tensor(ctx, layer.w1);
|
||||||
|
|
||||||
|
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
|
||||||
|
gguf_add_tensor(ctx, layer.w2);
|
||||||
|
|
||||||
|
ggml_format_name(layer.w3, TN_FFN_UP, i);
|
||||||
|
gguf_add_tensor(ctx, layer.w3);
|
||||||
|
|
||||||
|
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
|
||||||
|
gguf_add_tensor(ctx, layer.ffn_norm);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
gguf_write_to_file(ctx, filename, false);
|
||||||
|
gguf_free(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct train_params get_default_train_params() {
|
struct train_params get_default_train_params() {
|
||||||
struct train_params params;
|
struct train_params params;
|
||||||
params.fn_vocab_model = "tokenizer.bin";
|
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||||
params.fn_train_data = "shakespeare.txt";
|
params.fn_train_data = "shakespeare.txt";
|
||||||
params.fn_checkpoint_in = "checkpoint.bin";
|
params.fn_checkpoint_in = "checkpoint.bin";
|
||||||
@ -751,7 +837,7 @@ void print_usage(int /*argc*/, char ** argv, const struct train_params * params)
|
|||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "options:\n");
|
fprintf(stderr, "options:\n");
|
||||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||||
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||||
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
@ -812,6 +898,14 @@ bool params_parse(int argc, char ** argv, struct train_params * params) {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::string basename(const std::string &path) {
|
||||||
|
size_t pos = path.find_last_of("/");
|
||||||
|
if (pos == std::string::npos) {
|
||||||
|
return path;
|
||||||
|
}
|
||||||
|
return path.substr(pos + 1);
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
struct train_params params = get_default_train_params();
|
struct train_params params = get_default_train_params();
|
||||||
if (!params_parse(argc, argv, ¶ms)) {
|
if (!params_parse(argc, argv, ¶ms)) {
|
||||||
@ -840,6 +934,7 @@ int main(int argc, char ** argv) {
|
|||||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||||
model.hparams.n_ctx = params.n_ctx;
|
model.hparams.n_ctx = params.n_ctx;
|
||||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||||
|
model.hparams.n_ff = config.hidden_dim;
|
||||||
model.hparams.n_mult = 32;//params.n_mult;
|
model.hparams.n_mult = 32;//params.n_mult;
|
||||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||||
@ -853,6 +948,7 @@ int main(int argc, char ** argv) {
|
|||||||
model.ctx = ggml_init(lcparams);
|
model.ctx = ggml_init(lcparams);
|
||||||
|
|
||||||
init_model(&model);
|
init_model(&model);
|
||||||
|
model.name = basename(params.fn_llama2c_model);
|
||||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||||
|
|
||||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user