mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
fix conflicts
This commit is contained in:
parent
6beebf3fd9
commit
24f48833ab
@ -23,7 +23,6 @@ def permute(weights: NDArray, n_head: int) -> NDArray:
|
|||||||
.swapaxes(1, 2)
|
.swapaxes(1, 2)
|
||||||
.reshape(weights.shape))
|
.reshape(weights.shape))
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: str) -> int:
|
def count_model_parts(dir_model: str) -> int:
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
for filename in os.listdir(dir_model):
|
for filename in os.listdir(dir_model):
|
||||||
@ -34,7 +33,6 @@ def count_model_parts(dir_model: str) -> int:
|
|||||||
print("gguf: found " + str(num_parts) + " model parts")
|
print("gguf: found " + str(num_parts) + " model parts")
|
||||||
return num_parts
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
if len(sys.argv) < 3:
|
||||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||||
print(" ftype == 0 -> float32")
|
print(" ftype == 0 -> float32")
|
||||||
@ -188,7 +186,7 @@ else:
|
|||||||
)
|
)
|
||||||
|
|
||||||
for part_name in part_names:
|
for part_name in part_names:
|
||||||
print("gguf: loading model part '" + part_name + "'")
|
print("gguf: loading model part '"+ part_name + "'")
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||||
|
|
||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
@ -206,7 +204,7 @@ for part_name in part_names:
|
|||||||
|
|
||||||
# permute these
|
# permute these
|
||||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||||
data = permute(data, head_count)
|
data = permute(data,head_count)
|
||||||
|
|
||||||
# map tensor names
|
# map tensor names
|
||||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||||
@ -214,11 +212,11 @@ for part_name in part_names:
|
|||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
name = tensor_map[name[:-5]] + ".bias"
|
||||||
else:
|
else:
|
||||||
print("Can not map tensor '" + name + "'")
|
print( "Can not map tensor '" + name + "'" )
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
if ftype == 0 and data.dtype == np.float16:
|
||||||
@ -255,60 +253,56 @@ else:
|
|||||||
)
|
)
|
||||||
|
|
||||||
for part_name in part_names:
|
for part_name in part_names:
|
||||||
print("gguf: loading model part '" + part_name + "'")
|
print("gguf: loading model part '"+ part_name + "'")
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||||
|
|
||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
data = model_part[name]
|
data = model_part[name]
|
||||||
|
|
||||||
<< << << < HEAD
|
|
||||||
n_dims = len(data.shape)
|
old_dtype = data.dtype
|
||||||
data_dtype = data.dtype
|
|
||||||
== == == =
|
|
||||||
old_dtype = data.dtype
|
|
||||||
|
|
||||||
# we don't need these
|
# we don't need these
|
||||||
if name.endswith(".rotary_emb.inv_freq"):
|
if name.endswith(".rotary_emb.inv_freq"):
|
||||||
continue
|
continue
|
||||||
>>>>>> > 17800cd80fec468411481dc34a51d42a936442f1
|
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
# convert any unsupported data types to float32
|
||||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||||
data = data.to(torch.float32)
|
data = data.to(torch.float32)
|
||||||
|
|
||||||
data = data.squeeze().numpy()
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
# permute these
|
# permute these
|
||||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||||
data = permute(data, head_count)
|
data = permute(data, head_count)
|
||||||
|
|
||||||
# map tensor names
|
# map tensor names
|
||||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||||
name = tensor_map[name[:-7]] + ".weight"
|
name = tensor_map[name[:-7]] + ".weight"
|
||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
name = tensor_map[name[:-5]] + ".bias"
|
||||||
else:
|
else:
|
||||||
print("Can not map tensor '" + name + "'" )
|
print( "Can not map tensor '" + name + "'" )
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
if ftype == 0 and data.dtype == np.float16:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
gguf_writer.write_tensor_to_file(data)
|
gguf_writer.write_tensor_to_file(data)
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user