Merge branch 'master' into custom-attention-mask

This commit is contained in:
Georgi Gerganov 2023-09-28 15:19:57 +03:00
commit 25856900db
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
36 changed files with 730 additions and 239 deletions

View File

@ -468,6 +468,7 @@ jobs:
with:
operating_system: freebsd
version: '13.2'
hypervisor: 'qemu'
run: |
sudo pkg update
sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas

View File

@ -118,7 +118,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git")
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION} -DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
DEPENDS "${GIT_DIR}/index"
VERBATIM
@ -162,6 +162,8 @@ if (APPLE AND LLAMA_ACCELERATE)
message(STATUS "Accelerate framework found")
add_compile_definitions(GGML_USE_ACCELERATE)
add_compile_definitions(ACCELERATE_NEW_LAPACK)
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
else()
message(WARNING "Accelerate framework not found")

View File

@ -305,6 +305,8 @@ ifndef LLAMA_NO_ACCELERATE
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
ifeq ($(UNAME_S),Darwin)
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
MK_LDFLAGS += -framework Accelerate
endif
endif # LLAMA_NO_ACCELERATE
@ -514,22 +516,22 @@ main: examples/main/main.cpp build-info.h ggml.
@echo '==== Run ./main -h for help. ===='
@echo
simple: examples/simple/simple.cpp ggml.o llama.o common.o $(OBJS)
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(OBJS)
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o $(OBJS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o $(OBJS)
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o $(OBJS)
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o common.o $(OBJS)
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
@ -585,7 +587,7 @@ build-info.h: $(wildcard .git/index) scripts/build-info.sh
tests: $(TEST_TARGETS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp ggml.o $(OBJS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
./$@

View File

@ -45,6 +45,8 @@ let package = Package(
.unsafeFlags(["-Wno-shorten-64-to-32"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
.define("ACCELERATE_NEW_LAPACK")
.define("ACCELERATE_LAPACK_ILP64")
] + additionalSettings,
linkerSettings: [
.linkedFramework("Accelerate")

View File

@ -11,6 +11,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- Parallel decoding + continuous batching support incoming: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
**Devs should become familiar with the new API**
- Local Falcon 180B inference on Mac Studio
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
@ -90,6 +92,7 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [X] Mistral AI v0.1
**Bindings:**
@ -499,7 +502,7 @@ Building the program with BLAS support may lead to some performance improvements
```sh
mkdir build
cd build
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
cmake --build . --config Release
```
- CMake (Windows):
@ -555,6 +558,10 @@ python3 convert.py models/7B/
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# update the gguf filetype to current if older version is unsupported by another application
./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY
# run the inference
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```
@ -591,6 +598,11 @@ Several quantization methods are supported. They differ in the resulting model d
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
- recent k-quants improvements
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
### Perplexity (measuring model quality)
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).

View File

@ -36,17 +36,20 @@ const Maker = struct {
}
fn init(builder: *std.build.Builder) !Maker {
const commit_hash = @embedFile(".git/refs/heads/master");
// const commit_hash = @embedFile(".git/refs/heads/master");
const target = builder.standardTargetOptions(.{});
const config_header = builder.addConfigHeader(
.{ .style = .blank, .include_path = "build-info.h" },
.{
.BUILD_NUMBER = 0,
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
.BUILD_COMMIT = "12345", // omit newline
.BUILD_COMPILER = "Zig 0.11.0",
.BUILD_TARGET = try target.allocDescription(builder.allocator),
},
);
var m = Maker{
.builder = builder,
.target = builder.standardTargetOptions(.{}),
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.config_header = config_header,
.enable_lto = false,
@ -58,7 +61,7 @@ const Maker = struct {
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
try m.addProjectInclude(&.{"examples"});
try m.addProjectInclude(&.{"common"});
return m;
}
@ -71,6 +74,7 @@ const Maker = struct {
o.addCSourceFiles(&.{src}, m.cxxflags.items);
o.linkLibCpp();
}
o.addConfigHeader(m.config_header);
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
@ -104,15 +108,15 @@ pub fn build(b: *std.build.Builder) !void {
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const llama = make.obj("llama", "llama.cpp");
const common = make.obj("common", "examples/common.cpp");
const console = make.obj("common", "examples/console.cpp");
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("common", "common/console.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
if (server.target.isWindows()) {

View File

@ -659,9 +659,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
printf(" --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");

View File

@ -3,7 +3,6 @@
#pragma once
#include "llama.h"
#include "build-info.h"
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
@ -51,8 +50,8 @@ struct gpt_params {
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
// sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size

View File

@ -439,7 +439,7 @@ Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
#print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
if n_head_kv is not None and n_head != n_head_kv:
n_head //= n_head_kv
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "ggml.h"
@ -20,7 +21,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
@ -31,19 +32,19 @@ void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph,
ggml_graph_compute(graph, &plan);
}
float tensor_sum_elements(const ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==GGML_TYPE_F32) {
static float tensor_sum_elements(const ggml_tensor * tensor) {
double sum = 0;
if (tensor->type == GGML_TYPE_F32) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
}
}
}
return sum;
}
void tensor_dump(const ggml_tensor * tensor, const char * name) {
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
tensor->type, ggml_type_name(tensor->type),
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
@ -58,7 +59,7 @@ struct benchmark_params_struct {
int32_t n_iterations = 10;
};
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
@ -125,12 +126,15 @@ int main(int argc, char ** argv) {
//printf("Memsize required = %i\n", sizex*sizex);
// TODO: perform the bench for all types or for a user specified type
const ggml_type qtype = GGML_TYPE_Q4_1;
size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += 1024*1024*16;
@ -163,7 +167,7 @@ int main(int argc, char ** argv) {
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
ggml_set_f32(m2, 2.0f);
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
printf("\n------ Test 1 - Matrix Mult via F32 code\n");
// printf("Creating new tensor m11xm2\n");
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
@ -181,17 +185,16 @@ int main(int argc, char ** argv) {
TENSOR_DUMP(gf.nodes[0]);
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
int32_t nelements = sizex*sizey;
int32_t ne[2] = { sizex, sizey };
std::vector<int64_t> hist_cur(1 << 4, 0);
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data());
// Set up a the compute graph
// printf("Creating new tensor q31\n");
@ -202,8 +205,8 @@ int main(int argc, char ** argv) {
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data());
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
@ -220,7 +223,7 @@ int main(int argc, char ** argv) {
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
// Let's use the F32 result from above as a reference for the q4_0 multiplication
// Let's use the F32 result from above as a reference for the quantized multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
@ -250,7 +253,7 @@ int main(int argc, char ** argv) {
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
if (delta > allowed_delta) {

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "embd-input.h"

View File

@ -1,3 +1,21 @@
# embedding
# llama.cpp/example/embedding
TODO
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
### Unix-based systems (Linux, macOS, etc.):
```bash
./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null
```
### Windows:
```powershell
embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
```
The above command will output space-separated float values.

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View File

@ -367,10 +367,10 @@ bool falcon_model_load(const std::string & fname, falcon_model & model, gpt2bpe_
keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.file_type");
if (keyidx != -1) { printf("%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository");
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
}

View File

@ -380,10 +380,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
keyidx = gguf_find_key(ggufctx, "general.architecture");
if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.file_type");
if (keyidx != -1) { printf("%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository");
keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository");
if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
}

View File

@ -0,0 +1,271 @@
# llama.cpp/example/llama-bench
Performance testing tool for llama.cpp.
## Table of contents
1. [Syntax](#syntax)
2. [Examples](#examples)
1. [Text generation with different models](#text-generation-with-different-models)
2. [Prompt processing with different batch sizes](#prompt-processing-with-different-batch-sizes)
3. [Different numbers of threads](#different-numbers-of-threads)
4. [Different numbers of layers offloaded to the GPU](#different-numbers-of-layers-offloaded-to-the-gpu)
3. [Output formats](#output-formats)
1. [Markdown](#markdown)
2. [CSV](#csv)
3. [JSON](#json)
4. [SQL](#sql)
## Syntax
```
usage: ./llama-bench [options]
options:
-h, --help
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-b, --batch-size <n> (default: 512)
--memory-f32 <0|1> (default: 0)
-t, --threads <n> (default: 16)
-ngl N, --n-gpu-layers <n> (default: 99)
-mg i, --main-gpu <i> (default: 0)
-mmq, --mul-mat-q <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..>
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)
-v, --verbose (default: 0)
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
```
llama-bench can perform two types of tests:
- Prompt processing (pp): processing a prompt in batches (`-p`)
- Text generation (tg): generating a sequence of tokens (`-n`)
With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`).
Each test is repeated the number of times given by `-r`, and the results are averaged. The results are given in average tokens per second (t/s) and standard deviation. Some output formats (e.g. json) also include the individual results of each repetition.
For a description of the other options, see the [main example](../main/README.md).
## Examples
### Text generation with different models
```sh
$ ./llama-bench -m models/7B/ggml-model-q4_0.gguf -m models/13B/ggml-model-q4_0.gguf -p 0 -n 128,256,512
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 132.19 ± 0.55 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 256 | 129.37 ± 0.54 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 512 | 123.83 ± 0.25 |
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 128 | 82.17 ± 0.31 |
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 256 | 80.74 ± 0.23 |
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 512 | 78.08 ± 0.07 |
### Prompt processing with different batch sizes
```sh
$ ./llama-bench -n 0 -p 1024 -b 128,256,512,1024
```
| model | size | params | backend | ngl | n_batch | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------: | ---------- | ---------------: |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 128 | pp 1024 | 1436.51 ± 3.66 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 256 | pp 1024 | 1932.43 ± 23.48 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 512 | pp 1024 | 2254.45 ± 15.59 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 1024 | pp 1024 | 2498.61 ± 13.58 |
### Different numbers of threads
```sh
$ ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32
```
| model | size | params | backend | threads | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ---------: | ---------- | ---------------: |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | pp 64 | 6.17 ± 0.07 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | tg 16 | 4.05 ± 0.02 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | pp 64 | 12.31 ± 0.13 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | tg 16 | 7.80 ± 0.07 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | pp 64 | 23.18 ± 0.06 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | tg 16 | 12.22 ± 0.07 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | pp 64 | 32.29 ± 1.21 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | tg 16 | 16.71 ± 0.66 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | pp 64 | 33.52 ± 0.03 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | tg 16 | 15.32 ± 0.05 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | pp 64 | 59.00 ± 1.11 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 ||
### Different numbers of layers offloaded to the GPU
```sh
$ ./llama-bench -ngl 10,20,30,31,32,33,34,35
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | pp 512 | 373.36 ± 2.25 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | tg 128 | 13.45 ± 0.93 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | pp 512 | 472.65 ± 1.25 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | tg 128 | 21.36 ± 1.94 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | pp 512 | 631.87 ± 11.25 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | tg 128 | 40.04 ± 1.82 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | pp 512 | 657.89 ± 5.08 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | tg 128 | 48.19 ± 0.81 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | pp 512 | 688.26 ± 3.29 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | tg 128 | 54.78 ± 0.65 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | pp 512 | 704.27 ± 2.24 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | tg 128 | 60.62 ± 1.76 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | pp 512 | 881.34 ± 5.40 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | tg 128 | 71.76 ± 0.23 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | pp 512 | 2400.01 ± 7.72 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | tg 128 | 131.66 ± 0.49 |
## Output formats
By default, llama-bench outputs the results in markdown format. The results can be output in other formats by using the `-o` option.
### Markdown
```sh
$ ./llama-bench -o md
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | pp 512 | 2368.80 ± 93.24 |
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 131.42 ± 0.59 |
### CSV
```sh
$ ./llama-bench -o csv
```
```csv
build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961"
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342"
```
### JSON
```sh
$ ./llama-bench -o json
```
```json
[
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"n_gpu_layers": 99,
"main_gpu": 0,
"mul_mat_q": true,
"tensor_split": "0.00",
"n_prompt": 512,
"n_gen": 0,
"test_time": "2023-09-23T12:09:57Z",
"avg_ns": 212365953,
"stddev_ns": 985423,
"avg_ts": 2410.974041,
"stddev_ts": 11.163766,
"samples_ns": [ 213837238, 211635853, 212328053, 211329715, 212698907 ],
"samples_ts": [ 2394.34, 2419.25, 2411.36, 2422.75, 2407.16 ]
},
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"n_gpu_layers": 99,
"main_gpu": 0,
"mul_mat_q": true,
"tensor_split": "0.00",
"n_prompt": 0,
"n_gen": 128,
"test_time": "2023-09-23T12:09:59Z",
"avg_ns": 977425219,
"stddev_ns": 9268593,
"avg_ts": 130.965708,
"stddev_ts": 1.238924,
"samples_ns": [ 984472709, 974901233, 989474741, 970729355, 967548060 ],
"samples_ts": [ 130.019, 131.295, 129.362, 131.86, 132.293 ]
}
]
```
### SQL
SQL output is suitable for importing into a SQLite database. The output can be piped into the `sqlite3` command line tool to add the results to a database.
```sh
$ ./llama-bench -o sql
```
```sql
CREATE TABLE IF NOT EXISTS test (
build_commit TEXT,
build_number INTEGER,
cuda INTEGER,
opencl INTEGER,
metal INTEGER,
gpu_blas INTEGER,
blas INTEGER,
cpu_info TEXT,
gpu_info TEXT,
model_filename TEXT,
model_type TEXT,
model_size INTEGER,
model_n_params INTEGER,
n_batch INTEGER,
n_threads INTEGER,
f16_kv INTEGER,
n_gpu_layers INTEGER,
main_gpu INTEGER,
mul_mat_q INTEGER,
tensor_split TEXT,
n_prompt INTEGER,
n_gen INTEGER,
test_time TEXT,
avg_ns INTEGER,
stddev_ns INTEGER,
avg_ts REAL,
stddev_ts REAL
);
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');
```

View File

@ -903,7 +903,7 @@ static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads)
}
}
static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;

View File

@ -1,22 +1,25 @@
#!/usr/bin/env python3
"""
This script converts Hugging Face llama models to GGML and quantizes them.
This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them.
Usage:
python make-ggml.py --model {model_dir_or_hf_repo_name} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
Arguments:
- --model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.
- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
Quant types:
Old quant types (some base model types require these):
- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
New quant types (recommended):
- Q2_K: smallest, extreme quality loss - not recommended
- Q3_K: alias for Q3_K_M
- Q3_K_S: very small, very high quality loss
@ -40,9 +43,7 @@ import argparse
import os
from huggingface_hub import snapshot_download
def main(model, outname, outdir, quants, keep_fp16):
ggml_version = "v3"
def main(model, model_type, outname, outdir, quants, keep_fp16):
if not os.path.isdir(model):
print(f"Model not found at {model}. Downloading...")
try:
@ -63,17 +64,20 @@ def main(model, outname, outdir, quants, keep_fp16):
print("Building llama.cpp")
subprocess.run(f"cd .. && make quantize", shell=True, check=True)
fp16 = f"{outdir}/{outname}.ggml{ggml_version}.fp16.bin"
fp16 = f"{outdir}/{outname}.gguf.fp16.bin"
print(f"Making unquantised GGML at {fp16}")
print(f"Making unquantised GGUF at {fp16}")
if not os.path.isfile(fp16):
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
if model_type != "llama":
subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True)
else:
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
else:
print(f"Unquantised GGML already exists at: {fp16}")
print("Making quants")
for type in quants:
outfile = f"{outdir}/{outname}.ggml{ggml_version}.{type}.bin"
outfile = f"{outdir}/{outname}.gguf.{type}.bin"
print(f"Making {type} : {outfile}")
subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
@ -81,8 +85,9 @@ def main(model, outname, outdir, quants, keep_fp16):
os.remove(fp16)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert/Quantize HF to GGML. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
parser.add_argument('--model', required=True, help='Downloaded model dir or Hugging Face model repo name')
parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name')
parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.')
parser.add_argument('--outname', default=None, help='Output model(s) name')
parser.add_argument('--outdir', default=None, help='Output directory')
parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
@ -90,4 +95,4 @@ if __name__ == "__main__":
args = parser.parse_args()
main(args.model, args.outname, args.outdir, args.quants, args.keep_fp16)
main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16)

View File

@ -1,3 +1,21 @@
# perplexity
TODO
## Llama 2 70B Scorechart
Quantization | Model size (GiB) | Perplexity | Delta to fp16
-- | -- | -- | --
Q4_0 | 36.20 | 3.5550 | 3.61%
Q4_1 | 40.20 | 3.5125 | 2.37%
Q5_0 | 44.20 | 3.4744 | 1.26%
Q2_K | 27.27 | 3.7339 | 8.82%
Q3_K_S | 27.86 | 3.7019 | 7.89%
Q3_K_M | 30.83 | 3.5932 | 4.72%
Q3_K_L | 33.67 | 3.5617 | 3.80%
Q4_K_S | 36.39 | 3.4852 | 1.57%
Q4_K_M | 38.54 | 3.4725 | 1.20%
Q5_K_S | 44.20 | 3.4483 | 0.50%
Q5_K_M | 45.41 | 3.4451 | 0.40%
Q6_K | 52.70 | 3.4367 | 0.16%
fp16 | 128.5 | 3.4313 | -

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View File

@ -1,4 +1,5 @@
#define LLAMA_API_INTERNAL
#include "build-info.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"

View File

@ -1,3 +1,44 @@
# quantize
TODO
## Llama 2 7B
Quantization | Bits per Weight (BPW)
-- | --
Q2_K | 3.35
Q3_K_S | 3.50
Q3_K_M | 3.91
Q3_K_L | 4.27
Q4_K_S | 4.58
Q4_K_M | 4.84
Q5_K_S | 5.52
Q5_K_M | 5.68
Q6_K | 6.56
## Llama 2 13B
Quantization | Bits per Weight (BPW)
-- | --
Q2_K | 3.34
Q3_K_S | 3.48
Q3_K_M | 3.89
Q3_K_L | 4.26
Q4_K_S | 4.56
Q4_K_M | 4.83
Q5_K_S | 5.51
Q5_K_M | 5.67
Q6_K | 6.56
# Llama 2 70B
Quantization | Bits per Weight (BPW)
-- | --
Q2_K | 3.40
Q3_K_S | 3.47
Q3_K_M | 3.85
Q3_K_L | 4.19
Q4_K_S | 4.53
Q4_K_M | 4.80
Q5_K_S | 5.50
Q5_K_M | 5.65
Q6_K | 6.56

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View File

@ -1,3 +1,4 @@
#include "build-info.h"
#include "common.h"
#include "llama.h"

View File

@ -701,8 +701,8 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");

View File

@ -35,6 +35,20 @@
);
pkgs = import nixpkgs { inherit system; };
nativeBuildInputs = with pkgs; [ cmake ninja pkg-config ];
cudatoolkit_joined = with pkgs; symlinkJoin {
# HACK(Green-Sky): nix currently has issues with cmake findcudatoolkit
# see https://github.com/NixOS/nixpkgs/issues/224291
# copied from jaxlib
name = "${cudaPackages.cudatoolkit.name}-merged";
paths = [
cudaPackages.cudatoolkit.lib
cudaPackages.cudatoolkit.out
] ++ lib.optionals (lib.versionOlder cudaPackages.cudatoolkit.version "11") [
# for some reason some of the required libs are in the targets/x86_64-linux
# directory; not sure why but this works around it
"${cudaPackages.cudatoolkit}/targets/${system}"
];
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
postPatch = ''
@ -52,7 +66,8 @@
in
{
packages.default = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs buildInputs postInstall;
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = osSpecific;
cmakeFlags = cmakeFlags
++ (if isAarch64 && isDarwin then [
"-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1"
@ -69,6 +84,13 @@
"-DLLAMA_CLBLAST=ON"
];
};
packages.cuda = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ cudatoolkit_joined ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CUBLAS=ON"
];
};
packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ hip hipblas rocblas ];

View File

@ -14,9 +14,11 @@
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
@ -235,8 +237,12 @@ static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t *
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
template<typename T>
using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
typedef to_t_cuda_t<float> to_fp32_cuda_t;
typedef to_t_cuda_t<half> to_fp16_cuda_t;
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
@ -1515,6 +1521,14 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs,
v.y = x[ib + iqs + 1];
}
static __device__ void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
const float * x = (const float *) vx;
// automatic half -> float type cast if dfloat == float
v.x = x[ib + iqs + 0];
v.y = x[ib + iqs + 1];
}
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
const int ix = blockDim.x*blockIdx.x + threadIdx.x;
@ -1554,8 +1568,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
reinterpret_cast<half&>(y[ib].ds.y) = sum;
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
if (i >= k) {
@ -4837,6 +4851,11 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c
dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
dequantize_block<1, 1, convert_f32><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
@ -4846,6 +4865,15 @@ static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, floa
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_fp32_to_fp16_cuda;
default:
return nullptr;
}
}
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
@ -6037,8 +6065,6 @@ inline void ggml_cuda_op_mul_mat_cublas(
GGML_ASSERT(src1_ddf_i != nullptr);
GGML_ASSERT(dst_dd_i != nullptr);
const float alpha = 1.0f;
const float beta = 0.0f;
const int64_t ne00 = src0->ne[0];
@ -6047,16 +6073,6 @@ inline void ggml_cuda_op_mul_mat_cublas(
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
float * src0_ddq_as_f32 = nullptr;
size_t src0_as = 0;
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
int id;
CUDA_CHECK(cudaGetDevice(&id));
@ -6064,16 +6080,72 @@ inline void ggml_cuda_op_mul_mat_cublas(
// ldc == nrows of the matrix that cuBLAS writes into
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha, src0_ddf_i, ne00,
src1_ddf_i, ne10,
&beta, dst_dd_i, ldc));
const int compute_capability = g_compute_capabilities[id];
if (src0_as > 0) {
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
if (compute_capability >= CC_TURING && src0->type == GGML_TYPE_F16 && ggml_is_contiguous(src0) && ldc == row_diff) {
// convert src1 to fp16, multiply as fp16, convert dst to fp32
half * src1_as_f16 = nullptr;
size_t src1_as = 0;
if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = src1_ncols*ne10;
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16;
size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_dd_i, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16, CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
ggml_cuda_pool_free(dst_f16, dst_as);
if (src1_as != 0) {
ggml_cuda_pool_free(src1_as_f16, src1_as);
}
}
else {
float * src0_ddq_as_f32 = nullptr;
size_t src0_as = 0;
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha, src0_ddf_i, ne00,
src1_ddf_i, ne10,
&beta, dst_dd_i, ldc));
if (src0_as != 0) {
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
}
}
(void) dst;

View File

@ -19,6 +19,8 @@
#pragma once
#include "ggml.h"
#include <stddef.h>
#include <stdbool.h>
@ -33,6 +35,8 @@ struct ggml_cgraph;
extern "C" {
#endif
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
struct ggml_metal_context;
// number of command buffers to use

View File

@ -11,11 +11,14 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// TODO: temporary - reuse llama.cpp logging
#ifdef GGML_METAL_NDEBUG
#define metal_printf(...)
#define GGML_METAL_LOG_INFO(...)
#define GGML_METAL_LOG_WARN(...)
#define GGML_METAL_LOG_ERROR(...)
#else
#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#endif
#define UNUSED(x) (void)(x)
@ -121,8 +124,37 @@ static NSString * const msl_library_source = @"see metal.metal";
@implementation GGMLMetalClass
@end
ggml_log_callback ggml_metal_log_callback = NULL;
void * ggml_metal_log_user_data = NULL;
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
ggml_metal_log_callback = log_callback;
ggml_metal_log_user_data = user_data;
}
static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
if (ggml_metal_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
} else {
char* buffer2 = malloc(len+1);
vsnprintf(buffer2, len+1, format, args);
buffer2[len] = 0;
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
free(buffer2);
}
va_end(args);
}
}
struct ggml_metal_context * ggml_metal_init(int n_cb) {
metal_printf("%s: allocating\n", __func__);
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
id <MTLDevice> device;
NSString * s;
@ -132,14 +164,14 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
NSArray * devices = MTLCopyAllDevices();
for (device in devices) {
s = [device name];
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
}
#endif
// Pick and show default Metal device
device = MTLCreateSystemDefaultDevice();
s = [device name];
metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]);
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);
// Configure context
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
@ -166,7 +198,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
if (error) {
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
}
@ -180,11 +212,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]);
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
if (error) {
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
@ -196,7 +228,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
#endif
if (error) {
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
}
@ -208,11 +240,11 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
metal_printf("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
(int) ctx->pipeline_##name.threadExecutionWidth); \
if (error) { \
metal_printf("%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
@ -272,13 +304,13 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#undef GGML_METAL_ADD_KERNEL
}
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
#endif
@ -286,7 +318,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
}
void ggml_metal_free(struct ggml_metal_context * ctx) {
metal_printf("%s: deallocating\n", __func__);
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
#define GGML_METAL_DEL_KERNEL(name) \
[ctx->function_##name release]; \
[ctx->pipeline_##name release];
@ -363,7 +395,7 @@ void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
metal_printf("%s: error: posix_memalign failed\n", __func__);
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
return NULL;
}
@ -391,7 +423,7 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
// Metal buffer based on the host memory pointer
//
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
//metal_printf("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
//GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
const int64_t tsize = ggml_nbytes(t);
@ -403,13 +435,13 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
*offs = (size_t) ioffs;
//metal_printf("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
//GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
return ctx->buffers[i].metal;
}
}
metal_printf("%s: error: buffer is nil\n", __func__);
GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);
return nil;
}
@ -421,7 +453,7 @@ bool ggml_metal_add_buffer(
size_t size,
size_t max_size) {
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
metal_printf("%s: too many buffers\n", __func__);
GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__);
return false;
}
@ -431,7 +463,7 @@ bool ggml_metal_add_buffer(
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
metal_printf("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
return false;
}
}
@ -452,11 +484,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false;
}
metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
@ -476,13 +508,13 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
metal_printf("\n");
GGML_METAL_LOG_INFO("\n");
}
++ctx->n_buffers;
@ -490,17 +522,17 @@ bool ggml_metal_add_buffer(
}
#if TARGET_OS_OSX
metal_printf(", (%8.2f / %8.2f)",
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
metal_printf(", warning: current allocated size is greater than the recommended max working set size\n");
GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
metal_printf("\n");
GGML_METAL_LOG_INFO("\n");
}
#else
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
}
@ -613,7 +645,7 @@ void ggml_metal_graph_find_concurrency(
}
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
metal_printf("%s: too many elements for metal ctx->concur_list!\n", __func__);
GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__);
}
}
@ -667,7 +699,7 @@ void ggml_metal_graph_compute(
continue;
}
//metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
//GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
@ -711,17 +743,17 @@ void ggml_metal_graph_compute(
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
//metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
//if (src0) {
// metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
// GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
// ggml_is_contiguous(src0), src0->name);
//}
//if (src1) {
// metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
// GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
// ggml_is_contiguous(src1), src1->name);
//}
//if (dst) {
// metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
// GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
// dst->name);
//}
@ -867,7 +899,7 @@ void ggml_metal_graph_compute(
} break;
default:
{
metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
} break;
@ -1056,7 +1088,7 @@ void ggml_metal_graph_compute(
} break;
default:
{
metal_printf("Asserting on type %d\n",(int)src0t);
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_ASSERT(false && "not implemented");
}
};
@ -1308,7 +1340,7 @@ void ggml_metal_graph_compute(
} break;
default:
{
metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
}
@ -1333,7 +1365,7 @@ void ggml_metal_graph_compute(
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
if (status != MTLCommandBufferStatusCompleted) {
metal_printf("%s: command buffer %d failed with status %lu\n", __func__, i, status);
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
GGML_ASSERT(false);
}
}

View File

@ -847,7 +847,7 @@ std::array<std::string, 2> mul_str_values = {
"mul_f32", "float"
};
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
static std::string& replace(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) {
s.replace(pos, from.length(), to);
@ -856,7 +856,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string&
return s;
}
std::string generate_kernels() {
static std::string generate_kernels() {
std::stringstream src;
src << program_source << '\n';
src << k_quants_source << '\n';
@ -1788,7 +1788,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
return false;
}
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
// If device doesn't support FP16
if (!fp16_support) {
return false;

7
ggml.h
View File

@ -445,6 +445,12 @@ extern "C" {
GGML_OBJECT_WORK_BUFFER
};
enum ggml_log_level {
GGML_LOG_LEVEL_ERROR = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4
};
// ggml object
struct ggml_object {
size_t offs;
@ -1718,6 +1724,7 @@ extern "C" {
};
typedef void (*ggml_opt_callback)(void * data, float * sched);
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
// optimization parameters
//

View File

@ -32,7 +32,7 @@ KEY_GENERAL_URL = "general.url"
KEY_GENERAL_DESCRIPTION = "general.description"
KEY_GENERAL_LICENSE = "general.license"
KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.huggingface.repository"
KEY_GENERAL_FILE_TYPE = "general.file_type"
# LLM

106
llama.cpp
View File

@ -93,12 +93,12 @@
//
LLAMA_ATTRIBUTE_FORMAT(2, 3)
static void llama_log_internal (llama_log_level level, const char* format, ...);
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
static void llama_log_internal (ggml_log_level level, const char* format, ...);
static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
//
// helpers
@ -222,16 +222,16 @@ enum llm_kv {
};
static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source_url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source_hf_repo" },
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
{ LLM_KV_GENERAL_NAME, "general.name" },
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
{ LLM_KV_GENERAL_URL, "general.url" },
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
{ LLM_KV_GENERAL_LICENSE, "general.license" },
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
@ -905,7 +905,7 @@ static std::string llama_token_to_str(const struct llama_context * ctx, llama_to
struct llama_state {
// We save the log callback globally
llama_log_callback log_callback = llama_log_callback_default;
ggml_log_callback log_callback = llama_log_callback_default;
void * log_callback_user_data = nullptr;
};
@ -930,23 +930,22 @@ static const size_t kB = 1024;
static const size_t MB = kB*kB;
static const size_t GB = kB*kB*kB;
// default hparams (LLaMA 7B)
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx_train = 2048; // the context size used during training
uint32_t n_ctx = 512; // the context size used during inference
uint32_t n_embd = 4096;
uint32_t n_head = 32;
uint32_t n_head_kv = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
uint32_t n_ff = 11008;
uint32_t n_vocab;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_ctx; // context size used during inference
uint32_t n_embd;
uint32_t n_head;
uint32_t n_head_kv;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_ff;
float f_norm_eps = 1e-5;
float f_norm_rms_eps = 1e-5;
float f_norm_eps;
float f_norm_rms_eps;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
float rope_freq_base;
float rope_freq_scale;
bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
@ -1097,7 +1096,7 @@ struct llama_model {
std::string name = "n/a";
llama_hparams hparams;
llama_hparams hparams = {};
llama_vocab vocab;
struct ggml_tensor * tok_embeddings;
@ -1830,28 +1829,17 @@ static void llm_load_hparams(
hparams.n_head_kv = hparams.n_head;
GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
// TODO: manually setting rope freq base and scale should override this
// FIXME: partial fix when the param specified is not the default value, but
// will not work for overriding the model value to the params default
llama_context_params defaults = llama_context_default_params();
// rope_freq_base
{
float ropebase = 10000.0f;
GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) {
rope_freq_base = ropebase;
}
// rope_freq_base (optional)
if (rope_freq_base == 0.0f) {
rope_freq_base = 10000.0f;
GGUF_GET_KEY(ctx, rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
}
// rope_freq_scale (inverse of the kv) is optional
{
if (rope_freq_scale == 0.0f) {
float ropescale = 1.0f;
GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) {
rope_freq_scale = 1.0f/ropescale;
}
rope_freq_scale = 1.0f/ropescale;
}
// sanity check for n_rot (optional)
@ -4155,6 +4143,15 @@ static int llama_decode_internal(
n_threads = std::min(4, n_threads);
}
// If all tensors can be run on the GPU then using more than 1 thread is detrimental.
const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
model.arch == LLM_ARCH_BAICHUAN ||
model.arch == LLM_ARCH_FALCON;
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
n_threads = 1;
}
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
@ -6588,8 +6585,8 @@ struct llama_context_params llama_context_default_params() {
/*.n_gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.rope_freq_base =*/ 10000.0f,
/*.rope_freq_scale =*/ 1.0f,
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
@ -6769,6 +6766,7 @@ struct llama_context * llama_new_context_with_model(
llama_free(ctx);
return NULL;
}
ggml_metal_log_set_callback(llama_log_callback_default, NULL);
//ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
@ -7674,12 +7672,12 @@ const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal
return ctx->model.tensors_by_name;
}
void llama_log_set(llama_log_callback log_callback, void * user_data) {
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_state.log_callback_user_data = user_data;
}
static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
@ -7696,14 +7694,14 @@ static void llama_log_internal_v(llama_log_level level, const char * format, va_
va_end(args_copy);
}
static void llama_log_internal(llama_log_level level, const char * format, ...) {
static void llama_log_internal(ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
llama_log_internal_v(level, format, args);
va_end(args);
}
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);

15
llama.h
View File

@ -66,12 +66,6 @@ extern "C" {
typedef int32_t llama_token;
typedef int32_t llama_seq_id;
enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3,
LLAMA_LOG_LEVEL_INFO = 4
};
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
@ -184,13 +178,6 @@ extern "C" {
bool embedding; // embedding mode only
};
// Signature for logging events
// Note that text includes the new line character at the end for most events.
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists.
// It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
@ -729,7 +716,7 @@ extern "C" {
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);

View File

@ -8,16 +8,12 @@ set(BUILD_TARGET "unknown")
# Look for git
find_package(Git)
if(NOT Git_FOUND)
execute_process(
COMMAND which git
OUTPUT_VARIABLE GIT_EXECUTABLE
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(NOT GIT_EXECUTABLE STREQUAL "")
find_program(GIT_EXECUTABLE NAMES git git.exe)
if(GIT_EXECUTABLE)
set(Git_FOUND TRUE)
message(STATUS "Found Git using 'which': ${GIT_EXECUTABLE}")
message(STATUS "Found Git: ${GIT_EXECUTABLE}")
else()
message(WARNING "Git not found using 'find_package' or 'which'. Build info will not be accurate. Consider installing Git or ensuring it is in the PATH.")
message(WARNING "Git not found. Build info will not be accurate.")
endif()
endif()
@ -28,43 +24,32 @@ if(Git_FOUND)
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE HEAD
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE GIT_HEAD_RESULT
)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE COUNT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE GIT_COUNT_RESULT
)
if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0)
set(BUILD_COMMIT ${HEAD})
set(BUILD_NUMBER ${COUNT})
endif()
endif()
if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0)
set(BUILD_COMMIT ${HEAD})
set(BUILD_NUMBER ${COUNT})
endif()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_COMPILER ${OUT})
endif()
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
RESULT_VARIABLE RES
)
if (RES EQUAL 0)
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
endif()

View File

@ -1,4 +1,4 @@
#!/bin/env python3
#!/usr/bin/env python3
import os
import hashlib