mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
Server: fix seed for multiple slots (#6835)
* Server: add tests for consistent results * sampling: separate rng per sampling context
This commit is contained in:
parent
c0d1b3e03e
commit
28103f4832
@ -242,7 +242,9 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
// This is temporary, in the future the samplign state will be moved fully to llama_sampling_context.
|
||||
params.seed = std::stoul(argv[i]);
|
||||
sparams.seed = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
|
@ -1,4 +1,6 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "sampling.h"
|
||||
#include <random>
|
||||
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
@ -33,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
|
||||
|
||||
result->prev.resize(params.n_prev);
|
||||
|
||||
llama_sampling_set_rng_seed(result, params.seed);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -62,6 +66,13 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
ctx->cur.clear();
|
||||
}
|
||||
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||
if (seed == LLAMA_DEFAULT_SEED) {
|
||||
seed = time(NULL);
|
||||
}
|
||||
ctx->rng.seed(seed);
|
||||
}
|
||||
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
@ -203,7 +214,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
|
||||
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
|
@ -4,9 +4,10 @@
|
||||
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
@ -20,25 +21,26 @@ enum class llama_sampler_type : char {
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
@ -79,6 +81,8 @@ struct llama_sampling_context {
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
@ -93,6 +97,9 @@ void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Set the sampler seed
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
|
@ -30,7 +30,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
|
@ -38,7 +38,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
|
@ -240,7 +240,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
@ -854,7 +854,7 @@ struct server_context {
|
||||
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
||||
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
||||
slot.params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
|
||||
@ -1028,7 +1028,6 @@ struct server_context {
|
||||
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
llama_set_rng_seed(ctx, slot.params.seed);
|
||||
}
|
||||
|
||||
slot.command = SLOT_COMMAND_LOAD_PROMPT;
|
||||
|
57
examples/server/tests/features/results.feature
Normal file
57
examples/server/tests/features/results.feature
Normal file
@ -0,0 +1,57 @@
|
||||
@llama.cpp
|
||||
@results
|
||||
Feature: Results
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
And 128 max tokens to predict
|
||||
|
||||
Scenario Outline: Multi users completion
|
||||
Given <n_slots> slots
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given 42 as seed
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
|
||||
Given concurrent completion requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
And all slots are idle
|
||||
Then all predictions are equal
|
||||
Examples:
|
||||
| n_slots |
|
||||
| 1 |
|
||||
| 2 |
|
@ -61,6 +61,7 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_metrics = False
|
||||
context.server_process = None
|
||||
context.seed = None
|
||||
context.draft = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
context.response_format = None
|
||||
@ -107,6 +108,11 @@ def step_n_gpu_layer(context, ngl):
|
||||
context.n_gpu_layer = ngl
|
||||
|
||||
|
||||
@step('{draft:d} as draft')
|
||||
def step_draft(context, draft):
|
||||
context.draft = draft
|
||||
|
||||
|
||||
@step('{n_ctx:d} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = n_ctx
|
||||
@ -254,6 +260,15 @@ def step_n_tokens_predicted(context, predicted_n):
|
||||
assert_n_tokens_predicted(context.completion, predicted_n)
|
||||
|
||||
|
||||
@step('all predictions are equal')
|
||||
@async_run_until_complete
|
||||
async def step_predictions_equal(context):
|
||||
n_completions = await gather_tasks_results(context)
|
||||
assert n_completions >= 2, "need at least 2 completions"
|
||||
assert_all_predictions_equal(context.tasks_result)
|
||||
context.tasks_result = []
|
||||
|
||||
|
||||
@step('the completion is truncated')
|
||||
def step_assert_completion_truncated(context):
|
||||
step_assert_completion_truncated(context, '')
|
||||
@ -1020,6 +1035,23 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
|
||||
def assert_all_predictions_equal(completion_responses):
|
||||
content_0 = completion_responses[0]['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content 0: {content_0}")
|
||||
|
||||
i = 1
|
||||
for response in completion_responses[1:]:
|
||||
content = response['content']
|
||||
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"content {i}: {content}")
|
||||
|
||||
assert content == content_0, "contents not equal"
|
||||
|
||||
i += 1
|
||||
|
||||
|
||||
async def gather_tasks_results(context):
|
||||
n_tasks = len(context.concurrent_tasks)
|
||||
@ -1148,6 +1180,8 @@ def start_server_background(context):
|
||||
server_args.extend(['--ubatch-size', context.n_ubatch])
|
||||
if context.n_gpu_layer:
|
||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||
if context.draft is not None:
|
||||
server_args.extend(['--draft', context.draft])
|
||||
if context.server_continuous_batching:
|
||||
server_args.append('--cont-batching')
|
||||
if context.server_embeddings:
|
||||
|
@ -13667,7 +13667,7 @@ llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_da
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
|
||||
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
|
||||
GGML_ASSERT(ctx);
|
||||
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
@ -13680,7 +13680,6 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
auto & rng = ctx->rng;
|
||||
int idx = dist(rng);
|
||||
|
||||
llama_token result = candidates->data[idx].id;
|
||||
@ -13690,6 +13689,10 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
|
||||
return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
|
||||
}
|
||||
|
||||
void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
|
9
llama.h
9
llama.h
@ -987,7 +987,7 @@ extern "C" {
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
|
||||
LLAMA_API llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
@ -1074,8 +1074,9 @@ extern "C" {
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
@ -1112,6 +1113,10 @@ std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
|
||||
const std::string & src,
|
||||
llama_partial_utf8 partial_start);
|
||||
|
||||
// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
|
||||
// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
|
||||
llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
|
||||
|
||||
#endif // LLAMA_API_INTERNAL
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
Loading…
Reference in New Issue
Block a user