mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-05 18:44:51 +01:00
convert-llama2c-to-ggml: enable conversion of multiqueries, #5608
This commit is contained in:
parent
c4d7f81786
commit
284800b1e3
@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||
|
||||
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
@ -78,111 +79,101 @@ typedef struct {
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
std::vector<float> token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
float* rms_ffn_weight; // (layer, dim)
|
||||
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
std::vector<float> rms_ffn_weight; // (layer, dim)
|
||||
// weights for matmuls
|
||||
float* wq; // (layer, dim, dim)
|
||||
float* wk; // (layer, dim, dim)
|
||||
float* wv; // (layer, dim, dim)
|
||||
float* wo; // (layer, dim, dim)
|
||||
std::vector<float> wq; // (layer, dim, dim)
|
||||
std::vector<float> wk; // (layer, dim, dim)
|
||||
std::vector<float> wv; // (layer, dim, dim)
|
||||
std::vector<float> wo; // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
float* w1; // (layer, hidden_dim, dim)
|
||||
float* w2; // (layer, dim, hidden_dim)
|
||||
float* w3; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w1; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w2; // (layer, dim, hidden_dim)
|
||||
std::vector<float> w3; // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
float* rms_final_weight; // (dim,)
|
||||
std::vector<float> rms_final_weight; // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
|
||||
~TransformerWeights() {
|
||||
delete[] token_embedding_table;
|
||||
delete[] rms_att_weight;
|
||||
delete[] rms_ffn_weight;
|
||||
delete[] wq;
|
||||
delete[] wk;
|
||||
delete[] wv;
|
||||
delete[] wo;
|
||||
delete[] w1;
|
||||
delete[] w2;
|
||||
delete[] w3;
|
||||
delete[] rms_final_weight;
|
||||
delete[] wcls;
|
||||
}
|
||||
std::vector<float> wcls;
|
||||
};
|
||||
|
||||
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
static void alloc_weights(TransformerWeights* w, const Config* p, bool shared_weights) {
|
||||
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
||||
try {
|
||||
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
w->rms_att_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wq.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wo.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
w->rms_final_weight.resize(p->dim);
|
||||
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
if (shared_weights) {
|
||||
w->wcls = {};
|
||||
} else {
|
||||
w->wcls.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
catch (std::length_error&) {
|
||||
die("Invalid configuration. Failed to allocate memory for weights");
|
||||
}
|
||||
}
|
||||
|
||||
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
static int checkpoint_init_weights(TransformerWeights *w, const Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
|
||||
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
|
||||
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
|
||||
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
|
||||
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
|
||||
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
|
||||
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
|
||||
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
|
||||
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
|
||||
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
|
||||
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n",__func__, curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo
|
||||
}
|
||||
|
||||
static void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
printf("%f\n", w->rms_ffn_weight[0]);
|
||||
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
||||
LOG("%f\n", w->token_embedding_table[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
LOG("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
printf("%f\n", w->wq[0]);
|
||||
printf("%f\n", w->wk[0]);
|
||||
printf("%f\n", w->wv[0]);
|
||||
printf("%f\n", w->wo[0]);
|
||||
printf("%f\n", w->w1[0]);
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
LOG("%f\n", w->wq[0]);
|
||||
LOG("%f\n", w->wk[0]);
|
||||
LOG("%f\n", w->wv[0]);
|
||||
LOG("%f\n", w->wo[0]);
|
||||
LOG("%f\n", w->w1[0]);
|
||||
LOG("%f\n", w->w2[0]);
|
||||
LOG("%f\n", w->w3[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -231,6 +222,7 @@ struct my_llama_hparams {
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_head_kv = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
@ -325,14 +317,30 @@ struct train_params {
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
||||
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
LOG("%s: Allocating ", __func__);
|
||||
int64_t total = 1;
|
||||
int i = 0;
|
||||
for (; i < ggml_n_dims(t); ++i) {
|
||||
if (i > 0) LOG("x ");
|
||||
LOG("[%" PRId64 "] ", t->ne[i]);
|
||||
total *= t->ne[i];
|
||||
}
|
||||
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
||||
LOG("float space for %s\n", ggml_get_name(t));
|
||||
}
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
@ -342,6 +350,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
struct ggml_context * ctx = model->ctx;
|
||||
|
||||
@ -350,25 +360,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
@ -383,8 +376,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
@ -406,6 +399,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||
}
|
||||
|
||||
print_tensor_info(ctx);
|
||||
}
|
||||
|
||||
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
@ -421,9 +416,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
static void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %f", p);
|
||||
LOG(" %f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
@ -431,33 +426,12 @@ static void print_matrix(struct ggml_tensor * probs) {
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %.2f", p);
|
||||
LOG(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
@ -549,8 +523,9 @@ static std::string llama_escape_whitespaces(const std::string & text) {
|
||||
return out.str();
|
||||
}
|
||||
|
||||
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
static void load_vocab(const char *filename, const Config *config, struct llama_vocab *vocab) {
|
||||
if (is_ggml_file(filename)) {
|
||||
LOG("%s: Loading vocabulary from gguf file %s\n",__func__,filename);
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@ -578,6 +553,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||
|
||||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
|
||||
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
|
||||
}
|
||||
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
|
||||
@ -595,7 +573,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
gguf_free(ctx);
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n",__func__,filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
@ -638,38 +616,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
}
|
||||
|
||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (ggml_n_dims(gg_weights)) {
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
ct = 0;
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
ct = 0;
|
||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
int size = 1;
|
||||
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
|
||||
size *= gg_weights->ne[dim];
|
||||
}
|
||||
for (int ct = 0; ct < size; ++ct) {
|
||||
int64_t i0 = 0; int64_t i1 = 0;
|
||||
int64_t i2 = 0; int64_t i3 = 0;
|
||||
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
|
||||
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -679,15 +634,16 @@ static void save_as_llama_model(
|
||||
// convert AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
|
||||
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
|
||||
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
int n_ff = model->hparams.n_ff;
|
||||
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
@ -697,9 +653,10 @@ static void save_as_llama_model(
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
|
||||
|
||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
@ -736,8 +693,8 @@ static void save_as_llama_model(
|
||||
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
// n_head_kv is optional, default to n_head
|
||||
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
|
||||
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||
@ -916,19 +873,21 @@ int main(int argc, char ** argv) {
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
log_set_target(stdout);
|
||||
Config config;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
LOG("%s: Loading llama2c model from %s\n",__func__,params.fn_llama2c_model);
|
||||
FILE *file = fopen(params.fn_llama2c_model, "r");
|
||||
if (!file) { LOG("%s: Unable to open the checkpoint file %s!\n",__func__,params.fn_llama2c_model); return 1; }
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
if (fread(&config, sizeof(Config), 1, file) != 1) { LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model); return 1; }
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
alloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model); return 1; }
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
@ -942,6 +901,7 @@ int main(int argc, char ** argv) {
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_head_kv = config.n_kv_heads;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
print_params(&model.hparams);
|
||||
@ -956,7 +916,7 @@ int main(int argc, char ** argv) {
|
||||
model.name = basename(params.fn_llama2c_model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
LOG("%s: Saving llama.c model file %s in ggml format at %s\n",__func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user