mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
make : add LLAMA_HIP_UMA option (#4587)
NB: LLAMA_HIP_UMA=1 (or any value) adds MK_CPPFLAG -DGGML_HIP_UMA
This commit is contained in:
parent
f31b984898
commit
28cb35a0ec
3
Makefile
3
Makefile
@ -452,6 +452,9 @@ ifdef LLAMA_HIPBLAS
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
ifdef LLAMA_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
endif # LLAMA_HIP_UMA
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
|
@ -440,7 +440,13 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
|
||||
However, this hurts performance for non-integrated GPUs.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||
```bash
|
||||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030
|
||||
```
|
||||
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
|
Loading…
Reference in New Issue
Block a user