mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
This commit is contained in:
parent
6691aa8797
commit
2922280a1a
@ -1,14 +1,36 @@
|
|||||||
# Quick and dirty HF gptneox--> gguf conversion
|
# Quick and dirty HF gptneox--> gguf conversion
|
||||||
|
|
||||||
import gguf
|
import gguf
|
||||||
|
import os
|
||||||
import sys
|
import sys
|
||||||
import struct
|
import struct
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from typing import Any, List
|
from typing import Any, List
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
|
|
||||||
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||||
|
def bytes_to_unicode():
|
||||||
|
"""
|
||||||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||||
|
The reversible bpe codes work on unicode strings.
|
||||||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||||
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||||
|
"""
|
||||||
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||||
|
cs = bs[:]
|
||||||
|
n = 0
|
||||||
|
for b in range(2**8):
|
||||||
|
if b not in bs:
|
||||||
|
bs.append(b)
|
||||||
|
cs.append(2**8+n)
|
||||||
|
n += 1
|
||||||
|
cs = [chr(n) for n in cs]
|
||||||
|
return dict(zip(bs, cs))
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
if len(sys.argv) < 3:
|
||||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||||
@ -20,7 +42,7 @@ if len(sys.argv) < 3:
|
|||||||
# output in the same directory as the model
|
# output in the same directory as the model
|
||||||
dir_model = sys.argv[1]
|
dir_model = sys.argv[1]
|
||||||
fname_out = sys.argv[1] + "/ggml-model.bin"
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||||
|
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||||
|
|
||||||
# possible tensor data types
|
# possible tensor data types
|
||||||
# ftype == 0 -> float32
|
# ftype == 0 -> float32
|
||||||
@ -37,6 +59,8 @@ if len(sys.argv) > 2:
|
|||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||||
|
|
||||||
|
print("gguf: loading model "+last_dir)
|
||||||
|
|
||||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
@ -44,17 +68,17 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
|||||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
print("Model architecture not supported: " + hparams["architectures"][0] )
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||||
list_vars = model.state_dict()
|
list_vars = model.state_dict()
|
||||||
|
|
||||||
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||||
|
|
||||||
|
print("gguf: add metadata")
|
||||||
print("gguf: add key-values, metadata")
|
|
||||||
|
|
||||||
llm_arch = "gptneox"
|
llm_arch = "gptneox"
|
||||||
|
|
||||||
gguf_writer.add_name("pythia-70b-deduped")
|
gguf_writer.add_name(last_dir)
|
||||||
gguf_writer.add_description("gguf test model")
|
gguf_writer.add_description("gguf test model")
|
||||||
gguf_writer.add_architecture(llm_arch)
|
gguf_writer.add_architecture(llm_arch)
|
||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||||
@ -68,28 +92,55 @@ gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
|||||||
|
|
||||||
# TOKENIZATION
|
# TOKENIZATION
|
||||||
|
|
||||||
print("gguf: add key-values, tokenizer")
|
print("gguf: add tokenizer")
|
||||||
|
|
||||||
tokens: List[str] = []
|
tokens: List[str] = []
|
||||||
merges: List[str] = []
|
merges: List[str] = []
|
||||||
|
|
||||||
|
|
||||||
if Path(dir_model + "/tokenizer.json").is_file():
|
if Path(dir_model + "/tokenizer.json").is_file():
|
||||||
# vocab type gpt2
|
# gpt2 tokenizer
|
||||||
print("gguf: adding gpt2 tokenizer vocab")
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
|
print("gguf: adding gpt2 tokenizer merges")
|
||||||
|
|
||||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||||
tokenizer = json.load(f)
|
tokenizer_json = json.load(f)
|
||||||
|
merges = tokenizer_json["model"]["merges"]
|
||||||
|
|
||||||
for key in tokenizer["model"]["vocab"]:
|
|
||||||
tokens.append(key)
|
|
||||||
|
|
||||||
merges = tokenizer["model"]["merges"]
|
|
||||||
|
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
|
||||||
gguf_writer.add_token_list(tokens)
|
|
||||||
gguf_writer.add_token_merges(merges)
|
gguf_writer.add_token_merges(merges)
|
||||||
|
|
||||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
print("gguf: adding gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
vocab_size = len( tokenizer_json["model"]["vocab"] )
|
||||||
|
|
||||||
|
# from ggllm.cpp falcon_convert.py
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
|
byte_encoder = bytes_to_unicode()
|
||||||
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
||||||
|
|
||||||
|
for i in range(vocab_size):
|
||||||
|
if i in reverse_vocab:
|
||||||
|
try:
|
||||||
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
||||||
|
except KeyError:
|
||||||
|
text = bytearray()
|
||||||
|
for c in reverse_vocab[i]:
|
||||||
|
if ord(c) < 256: # single byte character
|
||||||
|
text.append(byte_decoder[ord(c)])
|
||||||
|
else: # multibyte special token character
|
||||||
|
text.extend(c.encode('utf-8'))
|
||||||
|
else:
|
||||||
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||||
|
padding_token = f"[PAD{i}]".encode("utf8")
|
||||||
|
text = bytearray(padding_token)
|
||||||
|
tokens.append(text)
|
||||||
|
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
|
||||||
|
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||||
print("gguf: adding special token ids")
|
print("gguf: adding special token ids")
|
||||||
|
|
||||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||||
@ -98,27 +149,27 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
|||||||
# find special token ids
|
# find special token ids
|
||||||
|
|
||||||
if "bos_token" in tokenizer_config:
|
if "bos_token" in tokenizer_config:
|
||||||
for key in tokenizer["added_tokens"]:
|
for key in tokenizer_json["added_tokens"]:
|
||||||
if key["content"] == tokenizer_config["bos_token"]:
|
if key["content"] == tokenizer_config["bos_token"]:
|
||||||
gguf_writer.add_bos_token_id(key["id"])
|
gguf_writer.add_bos_token_id(key["id"])
|
||||||
|
|
||||||
if "eos_token" in tokenizer_config:
|
if "eos_token" in tokenizer_config:
|
||||||
for key in tokenizer["added_tokens"]:
|
for key in tokenizer_json["added_tokens"]:
|
||||||
if key["content"] == tokenizer_config["eos_token"]:
|
if key["content"] == tokenizer_config["eos_token"]:
|
||||||
gguf_writer.add_eos_token_id(key["id"])
|
gguf_writer.add_eos_token_id(key["id"])
|
||||||
|
|
||||||
if "unk_token" in tokenizer_config:
|
if "unk_token" in tokenizer_config:
|
||||||
for key in tokenizer["added_tokens"]:
|
for key in tokenizer_json["added_tokens"]:
|
||||||
if key["content"] == tokenizer_config["unk_token"]:
|
if key["content"] == tokenizer_config["unk_token"]:
|
||||||
gguf_writer.add_unk_token_id(key["id"])
|
gguf_writer.add_unk_token_id(key["id"])
|
||||||
|
|
||||||
if "sep_token" in tokenizer_config:
|
if "sep_token" in tokenizer_config:
|
||||||
for key in tokenizer["added_tokens"]:
|
for key in tokenizer_json["added_tokens"]:
|
||||||
if key["content"] == tokenizer_config["sep_token"]:
|
if key["content"] == tokenizer_config["sep_token"]:
|
||||||
gguf_writer.add_sep_token_id(key["id"])
|
gguf_writer.add_sep_token_id(key["id"])
|
||||||
|
|
||||||
if "pad_token" in tokenizer_config:
|
if "pad_token" in tokenizer_config:
|
||||||
for key in tokenizer["added_tokens"]:
|
for key in tokenizer_json["added_tokens"]:
|
||||||
if key["content"] == tokenizer_config["pad_token"]:
|
if key["content"] == tokenizer_config["pad_token"]:
|
||||||
gguf_writer.add_pad_token_id(key["id"])
|
gguf_writer.add_pad_token_id(key["id"])
|
||||||
|
|
||||||
@ -165,11 +216,9 @@ print("gguf: write tensor data")
|
|||||||
|
|
||||||
for name in list_vars.keys():
|
for name in list_vars.keys():
|
||||||
data = list_vars[name].squeeze().numpy()
|
data = list_vars[name].squeeze().numpy()
|
||||||
# print("Process tensor: " + name + " with shape: ", data.shape)
|
|
||||||
|
|
||||||
# we don't need these
|
# we don't need these
|
||||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||||
# print(" Skip tensor: " + name)
|
|
||||||
continue
|
continue
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
@ -178,16 +227,13 @@ for name in list_vars.keys():
|
|||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
if ftype != 0:
|
if ftype != 0:
|
||||||
if name.endswith(".weight") and n_dims == 2:
|
if name.endswith(".weight") and n_dims == 2:
|
||||||
# print(" Converting to float16")
|
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
ftype_cur = 1
|
ftype_cur = 1
|
||||||
else:
|
else:
|
||||||
# print(" Converting to float32")
|
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
else:
|
else:
|
||||||
if data.dtype != np.float32:
|
if data.dtype != np.float32:
|
||||||
# print(" Converting to float32")
|
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user