diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index f21bc48f3..ea79b9062 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -56,13 +56,31 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; + std::string wname; + { + // remove any prefix and suffixes from the name + // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight + const char * p = strchr(src0->name, '#'); + if (p != NULL) { + p = p + 1; + const char * q = strchr(p, '#'); + if (q != NULL) { + wname = std::string(p, q - p); + } else { + wname = p; + } + } else { + wname = src0->name; + } + } + // when ask is true, the scheduler wants to know if we are interested in data from this tensor // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection if (ask) { if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications if (t->op != GGML_OP_MUL_MAT) return false; if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; - if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false; + if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false; return true; } @@ -94,12 +112,12 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * // this is necessary to guarantee equal number of "ncall" for each tensor for (int ex = 0; ex < n_as; ++ex) { src0 = t->src[2 + ex]; - auto& e = m_stats[src0->name]; + auto& e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { - fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]); + fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ASSERT(false); } // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger @@ -107,7 +125,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; ++e.ncall; if (m_params.verbosity > 1) { - printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); + printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } for (int row = 0; row < (int)src1->ne[1]; ++row) { const int excur = m_ids[row*n_as + idx]; @@ -129,17 +147,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } } } else { - auto& e = m_stats[src0->name]; + auto& e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { - fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]); + fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ASSERT(false); } ++e.ncall; if (m_params.verbosity > 1) { - printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); + printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } for (int row = 0; row < (int)src1->ne[1]; ++row) { const float * x = data + row * src1->ne[0]; diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 32eea7869..4cb230804 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -114,10 +114,10 @@ static std::string get_cpu_info() { static std::string get_gpu_info() { std::string id; #ifdef GGML_USE_CUBLAS - int count = ggml_cuda_get_device_count(); + int count = ggml_backend_cuda_get_device_count(); for (int i = 0; i < count; i++) { char buf[128]; - ggml_cuda_get_device_description(i, buf, sizeof(buf)); + ggml_backend_cuda_get_device_description(i, buf, sizeof(buf)); id += buf; if (i < count - 1) { id += "/"; diff --git a/ggml-alloc.c b/ggml-alloc.c index 8ac1d3e51..643b2e55f 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -548,7 +548,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - if (ggml_is_view(node)) { + // TODO: better way to add external dependencies + // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to + // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node + // itself is never used and should not be considered a dependency + if (ggml_is_view(node) && node->op != GGML_OP_NONE) { struct ggml_tensor * view_src = node->view_src; ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; } @@ -565,8 +569,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr ggml_gallocr_hash_get(galloc, src)->n_children += 1; - // allocate explicit inputs and leafs - if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) { + // allocate explicit inputs + if (src->flags & GGML_TENSOR_FLAG_INPUT) { ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); } } diff --git a/ggml-backend-impl.h b/ggml-backend-impl.h index e475e20e5..f121e1de4 100644 --- a/ggml-backend-impl.h +++ b/ggml-backend-impl.h @@ -103,6 +103,11 @@ extern "C" { // check if the backend supports an operation bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer + // these should be expensive operations with large batch sizes that may benefit from running on this backend + // even if the weight has to be copied from the CPU temporarily + bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op); + // (optional) event synchronization ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend); void (*GGML_CALL event_free) (ggml_backend_event_t event); diff --git a/ggml-backend.c b/ggml-backend.c index 31f8d5a6d..9f0084df7 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -278,7 +278,7 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_ return err; } -bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { return backend->iface.graph_compute(backend, cgraph); } @@ -286,6 +286,13 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * return backend->iface.supports_op(backend, op); } +bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { + if (backend->iface.offload_op != NULL) { + return backend->iface.offload_op(backend, op); + } + return false; +} + // backend copy static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { @@ -761,6 +768,10 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg if (cpu_plan->cplan.work_size > 0) { cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + if (cpu_plan->cplan.work_data == NULL) { + free(cpu_plan); + return NULL; + } } cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; @@ -834,6 +845,7 @@ static struct ggml_backend_i cpu_backend_i = { /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, /* .graph_compute = */ ggml_backend_cpu_graph_compute, /* .supports_op = */ ggml_backend_cpu_supports_op, + /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, @@ -999,11 +1011,11 @@ static bool ggml_is_view_op(enum ggml_op op) { #endif #ifndef GGML_SCHED_MAX_SPLITS -#define GGML_SCHED_MAX_SPLITS 256 +#define GGML_SCHED_MAX_SPLITS 2048 #endif #ifndef GGML_SCHED_MAX_SPLIT_INPUTS -#define GGML_SCHED_MAX_SPLIT_INPUTS 16 +#define GGML_SCHED_MAX_SPLIT_INPUTS 4 #endif #ifndef GGML_SCHED_MAX_COPIES @@ -1043,8 +1055,9 @@ struct ggml_backend_sched { struct ggml_cgraph * graph; // graph splits - struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS]; + struct ggml_backend_sched_split * splits; int n_splits; + int splits_capacity; // pipeline parallelism support int n_copies; @@ -1114,40 +1127,48 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st // TODO: use supports_op to check if the backend supports the op // assign pre-allocated nodes to their backend - // dst - int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor); - if (cur_backend != -1) { + int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor); + if (cur_backend_id != -1) { SET_CAUSE(tensor, "1.dst"); - return cur_backend; + return cur_backend_id; } // view_src if (tensor->view_src != NULL) { - cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src); - if (cur_backend != -1) { + cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src); + if (cur_backend_id != -1) { SET_CAUSE(tensor, "1.vsrc"); - return cur_backend; + return cur_backend_id; } } - // input + // graph input if (tensor->flags & GGML_TENSOR_FLAG_INPUT) { - cur_backend = sched->n_backends - 1; // last backend (assumed CPU) + cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU) SET_CAUSE(tensor, "1.inp"); - return cur_backend; + return cur_backend_id; } // assign nodes that use weights to the backend of the weights + // operations with weights are preferably run on the same backend as the weights for (int i = 0; i < GGML_MAX_SRC; i++) { const struct ggml_tensor * src = tensor->src[i]; if (src == NULL) { continue; } if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { - int src_backend = ggml_backend_sched_backend_from_buffer(sched, src); - // operations with weights are always run on the same backend as the weights + int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src); + // check if a backend with higher prio wants to offload the op + if (src_backend_id == sched->n_backends - 1) { + for (int b = 0; b < src_backend_id; b++) { + if (ggml_backend_offload_op(sched->backends[b], tensor)) { + SET_CAUSE(tensor, "1.off"); + return b; + } + } + } SET_CAUSE(tensor, "1.wgt%d", i); - return src_backend; + return src_backend_id; } } @@ -1227,28 +1248,31 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg // pass 1: assign backends to ops with pre-allocated inputs for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; - if (tensor_backend_id(leaf) != -1) { + int * leaf_backend_id = &tensor_backend_id(leaf); + if (*leaf_backend_id != -1) { // do not overwrite user assignments continue; } - tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf); + *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf); } for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - if (tensor_backend_id(node) != -1) { + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { // do not overwrite user assignments continue; } - tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node); + *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node); // src for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { continue; } - if (tensor_backend_id(src) == -1) { - tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src); + int * src_backend_id = &tensor_backend_id(src); + if (*src_backend_id == -1) { + *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src); } } } @@ -1270,21 +1294,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg if (ggml_is_view_op(node->op)) { continue; } - int tensor_backend_id = tensor_backend_id(node); - if (tensor_backend_id != -1) { - if (tensor_backend_id == sched->n_backends - 1) { + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + if (*node_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) cur_backend_id = -1; } else { - cur_backend_id = tensor_backend_id; + cur_backend_id = *node_backend_id; } } else { - tensor_backend_id(node) = cur_backend_id; + *node_backend_id = cur_backend_id; SET_CAUSE(node, "2.2"); } } } - // pass 2.1 expand gpu up { int cur_backend_id = -1; @@ -1293,22 +1316,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg if (ggml_is_view_op(node->op)) { continue; } - int tensor_backend_id = tensor_backend_id(node); - if (tensor_backend_id != -1) { - if (tensor_backend_id == sched->n_backends - 1) { + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + if (*node_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) cur_backend_id = -1; } else { - cur_backend_id = tensor_backend_id; + cur_backend_id = *node_backend_id; } } else { - tensor_backend_id(node) = cur_backend_id; + *node_backend_id = cur_backend_id; SET_CAUSE(node, "2.1"); } } } - - // pass 2.4 expand rest down { int cur_backend_id = -1; @@ -1317,16 +1338,16 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg if (ggml_is_view_op(node->op)) { continue; } - int tensor_backend_id = tensor_backend_id(node); - if (tensor_backend_id != -1) { - cur_backend_id = tensor_backend_id; + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + cur_backend_id = *node_backend_id; } else { - tensor_backend_id(node) = cur_backend_id; + *node_backend_id = cur_backend_id; SET_CAUSE(node, "2.4"); } } } - // pass 2.3 expand rest up + // pass 2.3 expand rest up { int cur_backend_id = -1; for (int i = graph->n_nodes - 1; i >= 0; i--) { @@ -1334,11 +1355,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg if (ggml_is_view_op(node->op)) { continue; } - int tensor_backend_id = tensor_backend_id(node); - if (tensor_backend_id != -1) { - cur_backend_id = tensor_backend_id; + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + cur_backend_id = *node_backend_id; } else { - tensor_backend_id(node) = cur_backend_id; + *node_backend_id = cur_backend_id; SET_CAUSE(node, "2.3"); } } @@ -1351,9 +1372,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg // pass 3: assign backends to remaining src from dst and view_src for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; - int cur_backend_id = tensor_backend_id(node); - if (node->view_src != NULL && cur_backend_id == -1) { - cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src); + int * cur_backend_id = &tensor_backend_id(node); + if (node->view_src != NULL && *cur_backend_id == -1) { + *cur_backend_id = tensor_backend_id(node->view_src); SET_CAUSE(node, "3.vsrc"); } for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -1361,14 +1382,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg if (src == NULL) { continue; } - int src_backend_id = tensor_backend_id(src); - if (src_backend_id == -1) { + int * src_backend_id = &tensor_backend_id(src); + if (*src_backend_id == -1) { if (src->view_src != NULL) { // views are always on the same backend as the source - tensor_backend_id(src) = tensor_backend_id(src->view_src); + *src_backend_id = tensor_backend_id(src->view_src); SET_CAUSE(src, "3.vsrc"); } else { - tensor_backend_id(src) = cur_backend_id; + *src_backend_id = *cur_backend_id; SET_CAUSE(src, "3.cur"); } } @@ -1380,19 +1401,20 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg // pass 4: split graph, find tensors that need to be copied { - int cur_split = 0; + int i_split = 0; + struct ggml_backend_sched_split * split = &sched->splits[0]; // find the backend of the first split, skipping view ops for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (!ggml_is_view_op(node->op)) { - sched->splits[0].backend_id = tensor_backend_id(node); + split->backend_id = tensor_backend_id(node); break; } } - sched->splits[0].i_start = 0; - sched->splits[0].n_inputs = 0; - memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK - int cur_backend_id = sched->splits[0].backend_id; + split->i_start = 0; + split->n_inputs = 0; + memset(split->inputs, 0, sizeof(split->inputs)); //HACK + int cur_backend_id = split->backend_id; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; @@ -1400,18 +1422,54 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg continue; } - int tensor_backend_id = tensor_backend_id(node); + const int node_backend_id = tensor_backend_id(node); - GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now + GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now - if (tensor_backend_id != cur_backend_id) { - sched->splits[cur_split].i_end = i; - cur_split++; - GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS); - sched->splits[cur_split].backend_id = tensor_backend_id; - sched->splits[cur_split].i_start = i; - sched->splits[cur_split].n_inputs = 0; - cur_backend_id = tensor_backend_id; + // check if we should start a new split based on the sources of the current node + bool need_new_split = false; + if (node_backend_id == cur_backend_id && split->n_inputs > 0) { + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + // check if a weight is on a different backend + // by starting a new split, the memory of the previously offloaded weights can be reused + if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { + int src_backend_id = tensor_backend_id(src); + if (src_backend_id != -1 && src_backend_id != cur_backend_id) { + need_new_split = true; + break; + } + } + // check if the split has too many inputs + if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) { + const size_t id = hash_id(src); + int src_backend_id = sched->tensor_backend_id[id]; + if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) { + //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name); + need_new_split = true; + break; + } + } + } + } + + if (node_backend_id != cur_backend_id || need_new_split) { + split->i_end = i; + i_split++; + if (i_split >= sched->splits_capacity) { + sched->splits_capacity *= 2; + sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); + GGML_ASSERT(sched->splits != NULL); + } + GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS); + split = &sched->splits[i_split]; + split->backend_id = node_backend_id; + split->i_start = i; + split->n_inputs = 0; + cur_backend_id = node_backend_id; } // find inputs that are not on the same backend @@ -1421,10 +1479,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg continue; } - int src_backend_id = tensor_backend_id(src); + const int src_backend_id = tensor_backend_id(src); assert(src_backend_id != -1); // all inputs should be assigned by now - if (src->flags & GGML_TENSOR_FLAG_INPUT) { + if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { size_t id = hash_id(src); if (sched->tensor_copies[id][src_backend_id][0] == NULL) { ggml_backend_t backend = sched->backends[src_backend_id]; @@ -1441,7 +1499,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor } sched->tensor_copies[id][src_backend_id][c] = tensor_copy; - tensor_backend_id(tensor_copy) = src_backend_id; SET_CAUSE(tensor_copy, "4.cpy"); } int n_graph_inputs = sched->n_graph_inputs++; @@ -1450,9 +1507,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg } } - if (src_backend_id != tensor_backend_id) { + if (src_backend_id != node_backend_id) { // create a copy of the input in the split's backend - size_t id = hash_id(src); + const size_t id = hash_id(src); if (sched->tensor_copies[id][cur_backend_id][0] == NULL) { ggml_backend_t backend = sched->backends[cur_backend_id]; for (int c = 0; c < sched->n_copies; c++) { @@ -1463,76 +1520,42 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor } sched->tensor_copies[id][cur_backend_id][c] = tensor_copy; - tensor_backend_id(tensor_copy) = cur_backend_id; SET_CAUSE(tensor_copy, "4.cpy"); } - int n_inputs = sched->splits[cur_split].n_inputs++; + int n_inputs = split->n_inputs++; GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); - sched->splits[cur_split].inputs[n_inputs] = src; + split->inputs[n_inputs] = src; } node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy]; } } } - sched->splits[cur_split].i_end = graph->n_nodes; - sched->n_splits = cur_split + 1; + split->i_end = graph->n_nodes; + sched->n_splits = i_split + 1; } #ifdef DEBUG_PASS4 fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); #endif -#ifndef NDEBUG - // sanity check: all sources should have the same backend as the node - for (int i = 0; i < graph->n_nodes; i++) { - struct ggml_tensor * node = graph->nodes[i]; - ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node); - if (tensor_backend == NULL) { - fprintf(stderr, "!!!!!!! %s has no backend\n", node->name); - } - if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) { - fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n", - node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", - node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ? - ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL"); - } - for (int j = 0; j < GGML_MAX_SRC; j++) { - struct ggml_tensor * src = node->src[j]; - if (src == NULL) { - continue; - } - ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src); - if (src_backend != tensor_backend /* && src_backend != NULL */) { - fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n", - node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", - j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL"); - } - if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) { - fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n", - src->name, src_backend ? ggml_backend_name(src_backend) : "NULL", - src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ? - ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL"); - } - } - } - fflush(stderr); -#endif - // create copies of the graph for each split // TODO: avoid this copy - struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false); + struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false); for (int i = 0; i < sched->n_splits; i++) { struct ggml_backend_sched_split * split = &sched->splits[i]; split->graph = ggml_graph_view(graph, split->i_start, split->i_end); // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split for (int j = 0; j < split->n_inputs; j++) { + assert(graph_copy->size > (graph_copy->n_nodes + 1)); + struct ggml_tensor * input = split->inputs[j]; - struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy]; + const size_t input_id = hash_id(input); + struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy]; // add a dependency to the input source so that it is not freed before the copy is done struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); input_dep->src[0] = input; - sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input); + sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id]; graph_copy->nodes[graph_copy->n_nodes++] = input_dep; // add a dependency to the input copy so that it is allocated at the start of the split @@ -1541,6 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg } for (int j = split->i_start; j < split->i_end; j++) { + assert(graph_copy->size > graph_copy->n_nodes); sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; } @@ -1625,13 +1649,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s } ggml_backend_tensor_copy(input, input_cpy); } else { + // wait for the split backend to finish using the input before overwriting it if (sched->events[split_backend_id][sched->cur_copy] != NULL) { ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]); } else { ggml_backend_synchronize(split_backend); - ggml_backend_synchronize(input_backend); } - ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy); } } @@ -1701,17 +1724,21 @@ ggml_backend_sched_t ggml_backend_sched_new( struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1); // initialize hash table - sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS); + sched->hash_set = ggml_hash_set_new(graph_size); sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size); sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size); - sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size); - sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size); + + const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; + sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size); + sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size); sched->n_backends = n_backends; sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1; - GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES); + const int initial_splits_capacity = 16; + sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity); + sched->splits_capacity = initial_splits_capacity; for (int b = 0; b < n_backends; b++) { sched->backends[b] = backends[b]; @@ -1742,6 +1769,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) { } ggml_gallocr_free(sched->galloc); ggml_free(sched->ctx); + free(sched->splits); free(sched->hash_set.keys); free(sched->tensor_backend_id); free(sched->tensor_copies); @@ -1762,6 +1790,8 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) { } bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { + GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes); + ggml_backend_sched_split_graph(sched, measure_graph); // TODO: extract this to a separate function @@ -1776,7 +1806,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * } bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { - GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS); + GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes); ggml_backend_sched_split_graph(sched, graph); diff --git a/ggml-backend.h b/ggml-backend.h index 099d9c258..422457ab6 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -70,11 +70,11 @@ extern "C" { GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); - GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan); - GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); - - GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); + GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); // tensor copy between different backends GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); diff --git a/ggml-cuda.cu b/ggml-cuda.cu index db595409a..139025588 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -82,6 +82,10 @@ #define cudaGetDeviceProperties hipGetDeviceProperties #define cudaGetErrorString hipGetErrorString #define cudaGetLastError hipGetLastError +#define cudaHostRegister hipHostRegister +#define cudaHostRegisterPortable hipHostRegisterPortable +#define cudaHostRegisterReadOnly hipHostRegisterReadOnly +#define cudaHostUnregister hipHostUnregister #define cudaLaunchHostFunc hipLaunchHostFunc #ifdef GGML_HIP_UMA #define cudaMalloc hipMallocManaged @@ -7787,11 +7791,7 @@ struct cuda_pool_alloc { static bool g_cublas_loaded = false; -GGML_CALL bool ggml_cublas_loaded(void) { - return g_cublas_loaded; -} - -GGML_CALL void ggml_init_cublas() { +static void ggml_init_cublas() { static bool initialized = false; if (!initialized) { @@ -7880,7 +7880,7 @@ GGML_CALL void ggml_init_cublas() { } } -GGML_CALL void * ggml_cuda_host_malloc(size_t size) { +static void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } @@ -7890,7 +7890,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) { if (err != cudaSuccess) { // clear the error cudaGetLastError(); - fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", + fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__, size/1024.0/1024.0, cudaGetErrorString(err)); return nullptr; } @@ -7898,7 +7898,7 @@ GGML_CALL void * ggml_cuda_host_malloc(size_t size) { return ptr; } -GGML_CALL void ggml_cuda_host_free(void * ptr) { +static void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } @@ -9036,21 +9036,13 @@ static void ggml_cuda_op_soft_max( // positions tensor float * src2_dd = nullptr; - cuda_pool_alloc src2_f; ggml_tensor * src2 = dst->src[2]; const bool use_src2 = src2 != nullptr; if (use_src2) { - const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU; - - if (src2_on_device) { - ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; - src2_dd = (float *) src2_extra->data_device[g_main_device]; - } else { - src2_dd = src2_f.alloc(ggml_nelements(src2)); - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream)); - } + ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra; + src2_dd = (float *) src2_extra->data_device[g_main_device]; } soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream); @@ -9107,55 +9099,24 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; - const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU; - const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU; - // dd = data device float * src0_ddf = nullptr; float * src1_ddf = nullptr; float * dst_ddf = nullptr; - cuda_pool_alloc src0_f; - cuda_pool_alloc src1_f; - cuda_pool_alloc dst_f; - ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - if (src0_on_device) { - src0_ddf = (float *) src0_extra->data_device[g_main_device]; - } else { - src0_ddf = src0_f.alloc(ggml_nelements(src0)); - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream)); - } + src0_ddf = (float *) src0_extra->data_device[g_main_device]; if (use_src1) { - if (src1_on_device) { - src1_ddf = (float *) src1_extra->data_device[g_main_device]; - } else { - src1_ddf = src1_f.alloc(ggml_nelements(src1)); - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream)); - } - } - if (dst_on_device) { - dst_ddf = (float *) dst_extra->data_device[g_main_device]; - } else { - dst_ddf = dst_f.alloc(ggml_nelements(dst)); + src1_ddf = (float *) src1_extra->data_device[g_main_device]; } + dst_ddf = (float *) dst_extra->data_device[g_main_device]; // do the computation op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream); CUDA_CHECK(cudaGetLastError()); - - // copy dst to host if necessary - if (!dst_on_device) { - CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); - } - - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - CUDA_CHECK(cudaDeviceSynchronize()); - } } static void ggml_cuda_set_peer_access(const int n_tokens) { @@ -9251,7 +9212,6 @@ static void ggml_cuda_op_mul_mat( ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); const bool src1_is_contiguous = ggml_is_contiguous(src1); @@ -9322,13 +9282,13 @@ static void ggml_cuda_op_mul_mat( used_devices++; - const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool src1_on_device = id == g_main_device; // TODO: check from buffer + const bool dst_on_device = id == g_main_device; ggml_cuda_set_device(id); cudaStream_t stream = g_cudaStreams[id][0]; - if (src0_on_device && src0_is_contiguous) { + if (src0_is_contiguous) { dev[id].src0_dd = (char *) src0_extra->data_device[id]; } else { dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0)); @@ -9374,8 +9334,8 @@ static void ggml_cuda_op_mul_mat( continue; } - const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device; + const bool src1_on_device = id == g_main_device; // TODO: check from buffer + const bool dst_on_device = id == g_main_device; const int64_t row_diff = dev[id].row_high - dev[id].row_low; ggml_cuda_set_device(id); @@ -9400,12 +9360,12 @@ static void ggml_cuda_op_mul_mat( // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed - if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) { + if (id == g_main_device) { dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary - if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) { + if (src1_is_contiguous) { if (id != g_main_device) { if (convert_src1_to_q8_1) { char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset; @@ -9418,19 +9378,19 @@ static void ggml_cuda_op_mul_mat( src1_ncols*ne10*sizeof(float), stream)); } } - } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) { + } else if (src1_on_device && !src1_is_contiguous) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d( src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); } else { GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) { + if (convert_src1_to_q8_1 && !src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } - if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) { + if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) { CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); } @@ -9441,17 +9401,7 @@ static void ggml_cuda_op_mul_mat( // copy dst to host or other device if necessary if (!dst_on_device) { - void * dst_off_device; - cudaMemcpyKind kind; - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - dst_off_device = dst->data; - kind = cudaMemcpyDeviceToHost; - } else if (dst->backend == GGML_BACKEND_TYPE_GPU) { - dst_off_device = dst_extra->data_device[g_main_device]; - kind = cudaMemcpyDeviceToDevice; - } else { - GGML_ASSERT(false); - } + void * dst_off_device = dst_extra->data_device[g_main_device]; if (split) { // src0 = weight matrix is saved as a transposed matrix for better memory layout. // dst is NOT transposed. @@ -9462,28 +9412,26 @@ static void ggml_cuda_op_mul_mat( GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; #if !defined(GGML_USE_HIPBLAS) - if (kind == cudaMemcpyDeviceToDevice) { - // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices - cudaMemcpy3DPeerParms p = {}; - p.dstDevice = g_main_device; - p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols); - p.srcDevice = id; - p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols); - p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1); - CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream)); - } else + // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices + cudaMemcpy3DPeerParms p = {}; + p.dstDevice = g_main_device; + p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols); + p.srcDevice = id; + p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols); + p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1); + CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream)); +#else + // HIP does not support cudaMemcpy3DPeerAsync or vmm pools + CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), + dst_dd_i, row_diff*sizeof(float), + row_diff*sizeof(float), src1_ncols, + cudaMemcpyDeviceToDevice, stream)); #endif - { - CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), - dst_dd_i, row_diff*sizeof(float), - row_diff*sizeof(float), src1_ncols, - kind, stream)); - } } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); dhf_dst_i += src1_col_0*ne0; - CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream)); + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream)); } } @@ -9510,11 +9458,6 @@ static void ggml_cuda_op_mul_mat( } } } - - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - ggml_cuda_set_device(g_main_device); - CUDA_CHECK(cudaDeviceSynchronize()); - } } static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -9599,36 +9542,19 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU; - // dd = data device float * src0_ddf = nullptr; float * src1_ddf = nullptr; float * dst_ddf = nullptr; - cuda_pool_alloc dst_f; - ggml_cuda_set_device(g_main_device); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - if (dst_on_device) { - dst_ddf = (float *) dst_extra->data_device[g_main_device]; - } else { - dst_ddf = dst_f.alloc(ggml_nelements(dst)); - } + dst_ddf = (float *) dst_extra->data_device[g_main_device]; // do the computation ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream); CUDA_CHECK(cudaGetLastError()); - - // copy dst to host if necessary - if (!dst_on_device) { - CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); - } - - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - CUDA_CHECK(cudaDeviceSynchronize()); - } } static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -9639,21 +9565,6 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); } -GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (!g_cublas_loaded) return false; - - const int64_t ne10 = src1->ne[0]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - - // TODO: find the optimal values for these - return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && - src1->type == GGML_TYPE_F32 && - dst->type == GGML_TYPE_F32 && - (ne0 >= 32 && ne1 >= 32 && ne10 >= 32); -} - static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT); @@ -9891,11 +9802,6 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm } static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - const bool all_on_device = - (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) && - (src1->backend == GGML_BACKEND_TYPE_GPU) && - ( dst->backend == GGML_BACKEND_TYPE_GPU); - const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT; int64_t min_compute_capability = INT_MAX; @@ -9972,13 +9878,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); - if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { // KQ single-batch ggml_cuda_mul_mat_vec_p021(src0, src1, dst); - } else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { + } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { // KQV single-batch ggml_cuda_mul_mat_vec_nc(src0, src1, dst); - } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { + } else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { // KQ + KQV multi-batch ggml_cuda_mul_mat_batched_cublas(src0, src1, dst); } else if (use_dequantize_mul_mat_vec) { @@ -10178,6 +10084,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s ggml_cuda_mul_mat_id_cublas(dst); // TODO: mmq/mmv support #endif + cudaStream_t stream = g_cudaStreams[g_main_device][0]; const size_t nb11 = src1->nb[1]; const size_t nb1 = dst->nb[1]; @@ -10187,16 +10094,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s const int32_t n_as = ((int32_t *) dst->op_params)[1]; std::vector ids_host(ggml_nbytes(ids)); - - cudaStream_t stream = g_cudaStreams[g_main_device][0]; - - if (ids->backend == GGML_BACKEND_TYPE_GPU) { - const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; - CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); - CUDA_CHECK(cudaStreamSynchronize(stream)); - } else { - memcpy(ids_host.data(), ids->data, ggml_nbytes(ids)); - } + const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; + CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); + CUDA_CHECK(cudaStreamSynchronize(stream)); const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra; const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra; @@ -10213,20 +10113,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s src1_row.extra = &src1_row_extra; dst_row.extra = &dst_row_extra; - char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ? - (char *) src1->data : (char *) src1_extra->data_device[g_main_device]; - char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ? - (char *) dst->data : (char *) dst_extra->data_device[g_main_device]; + char * src1_original = (char *) src1_extra->data_device[g_main_device]; + char * dst_original = (char *) dst_extra->data_device[g_main_device]; if (src1->ne[1] == 1) { - GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU); - GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU); - for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { - //int32_t row_id; - //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); - //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); - const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); GGML_ASSERT(row_id >= 0 && row_id < n_as); @@ -10248,11 +10139,6 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); - const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ? - cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice; - const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ? - cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice; - for (int32_t row_id = 0; row_id < n_as; ++row_id) { const struct ggml_tensor * src0_row = dst->src[row_id + 2]; @@ -10267,7 +10153,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(row_id >= 0 && row_id < n_as); CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11, - nb11, src1_kind, stream)); + nb11, cudaMemcpyDeviceToDevice, stream)); num_src1_rows++; } @@ -10299,15 +10185,11 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(row_id >= 0 && row_id < n_as); CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1, - nb1, dst_kind, stream)); + nb1, cudaMemcpyDeviceToDevice, stream)); num_src1_rows++; } } } - - if (dst->backend == GGML_BACKEND_TYPE_CPU) { - CUDA_CHECK(cudaStreamSynchronize(stream)); - } } static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -10435,7 +10317,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); } -GGML_CALL static void ggml_cuda_set_main_device(const int main_device) { +static void ggml_cuda_set_main_device(const int main_device) { if (main_device >= g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); @@ -10450,18 +10332,9 @@ GGML_CALL static void ggml_cuda_set_main_device(const int main_device) { } } -GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { +static bool ggml_cuda_compute_forward(struct ggml_tensor * tensor) { if (!g_cublas_loaded) return false; - ggml_cuda_func_t func; - const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU - || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) - || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU); - - if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) { - return false; - } - if (tensor->op == GGML_OP_MUL_MAT) { if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { #ifndef NDEBUG @@ -10471,6 +10344,8 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st } } + ggml_cuda_func_t func; + switch (tensor->op) { case GGML_OP_REPEAT: func = ggml_cuda_repeat; @@ -10548,15 +10423,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st func = ggml_cuda_rms_norm; break; case GGML_OP_MUL_MAT: - if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) { - return false; - } func = ggml_cuda_mul_mat; break; case GGML_OP_MUL_MAT_ID: - if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) { - return false; - } func = ggml_cuda_mul_mat_id; break; case GGML_OP_SCALE: @@ -10613,17 +10482,11 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st ggml_cuda_set_peer_access(tensor->src[1]->ne[1]); } - if (params->ith != 0) { - return true; - } - if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { - return true; - } func(tensor->src[0], tensor->src[1], tensor); return true; } -GGML_CALL int ggml_cuda_get_device_count() { +static int ggml_cuda_get_device_count() { int device_count; if (cudaGetDeviceCount(&device_count) != cudaSuccess) { return 0; @@ -10631,7 +10494,7 @@ GGML_CALL int ggml_cuda_get_device_count() { return device_count; } -GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) { +static void ggml_cuda_get_device_description(int device, char * description, size_t description_size) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); snprintf(description, description_size, "%s", prop.name); @@ -10736,6 +10599,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); if (padded_size > original_size && tensor->view_src == nullptr) { + ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size)); } } @@ -10873,6 +10737,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { + ggml_init_cublas(); + // FIXME: this is not thread safe if (device >= ggml_backend_cuda_get_device_count()) { return nullptr; @@ -11157,6 +11023,8 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { + ggml_init_cublas(); + // FIXME: this is not thread safe static std::map, struct ggml_backend_buffer_type> buft_map; @@ -11348,9 +11216,6 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t ggml_cuda_set_main_device(cuda_ctx->device); - ggml_compute_params params = {}; - params.type = GGML_TASK_TYPE_COMPUTE; - params.ith = 0; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_tensor * node = cgraph->nodes[i]; @@ -11372,7 +11237,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t } #endif - bool ok = ggml_cuda_compute_forward(¶ms, node); + bool ok = ggml_cuda_compute_forward(node); if (!ok) { fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); } @@ -11509,6 +11374,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons UNUSED(backend); } +GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { + const int min_batch_size = 32; + + return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS; + + UNUSED(backend); +} + static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; @@ -11571,6 +11444,7 @@ static ggml_backend_i ggml_backend_cuda_interface = { /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_cuda_graph_compute, /* .supports_op = */ ggml_backend_cuda_supports_op, + /* .offload_op = */ ggml_backend_cuda_offload_op, /* .event_new = */ ggml_backend_cuda_event_new, /* .event_free = */ ggml_backend_cuda_event_free, /* .event_record = */ ggml_backend_cuda_event_record, @@ -11584,7 +11458,7 @@ static ggml_guid_t ggml_backend_cuda_guid() { } GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { - ggml_init_cublas(); // TODO: remove from ggml.c + ggml_init_cublas(); if (device < 0 || device >= ggml_cuda_get_device_count()) { fprintf(stderr, "%s: error: invalid device %d\n", __func__, device); @@ -11627,6 +11501,31 @@ GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, si CUDA_CHECK(cudaMemGetInfo(free, total)); } +GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { + if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { + return false; + } + + cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + + fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__, + size/1024.0/1024.0, cudaGetErrorString(err)); + return false; + } + return true; +} + +GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) { + cudaError_t err = cudaHostUnregister(buffer); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + } +} + // backend registry GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); diff --git a/ggml-cuda.h b/ggml-cuda.h index b1ebd61d7..5eb4af40f 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -17,29 +17,17 @@ extern "C" { #define GGML_CUDA_MAX_DEVICES 16 -// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`. -GGML_API GGML_CALL void ggml_init_cublas(void); - -// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`. -GGML_API GGML_CALL bool ggml_cublas_loaded(void); - -GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size); -GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr); - -GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); - -GGML_API GGML_CALL int ggml_cuda_get_device_count(void); -GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size); - // backend API GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); +// device buffer GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); + // split tensor buffer that splits matrices by rows across multiple devices GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); + // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); @@ -47,6 +35,9 @@ GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); +GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); +GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); + #ifdef __cplusplus } #endif diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 4caf2c9e7..81dd50678 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1951,6 +1951,7 @@ static struct ggml_backend_i kompute_backend_i = { /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_kompute_graph_compute, /* .supports_op = */ ggml_backend_kompute_supports_op, + /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, diff --git a/ggml-metal.m b/ggml-metal.m index c3451a79b..109e5fe6b 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -2837,6 +2837,7 @@ static struct ggml_backend_i ggml_backend_metal_i = { /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_metal_graph_compute, /* .supports_op = */ ggml_backend_metal_supports_op, + /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 6dc5eb20c..d51f23b41 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -17390,6 +17390,7 @@ static ggml_backend_i ggml_backend_sycl_interface = { /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_sycl_graph_compute, /* .supports_op = */ ggml_backend_sycl_supports_op, + /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index 698b31496..cbceaa19f 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -5699,6 +5699,7 @@ static ggml_backend_i ggml_backend_vk_interface = { /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_vk_graph_compute, /* .supports_op = */ ggml_backend_vk_supports_op, + /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, diff --git a/ggml.c b/ggml.c index fa23cb3c4..1d5854960 100644 --- a/ggml.c +++ b/ggml.c @@ -282,8 +282,6 @@ inline static void * ggml_calloc(size_t num, size_t size) { #else #include #endif -#elif defined(GGML_USE_CUBLAS) -#include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #elif defined(GGML_USE_VULKAN) @@ -2640,9 +2638,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); } -#if defined(GGML_USE_CUBLAS) - ggml_init_cublas(); -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) ggml_cl_init(); #elif defined(GGML_USE_VULKAN) ggml_vk_init_cpu_assist(); @@ -11105,7 +11101,6 @@ static void ggml_compute_forward_out_prod_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod // TODO: #if defined(GGML_USE_CLBLAST) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) @@ -11305,7 +11300,6 @@ static void ggml_compute_forward_out_prod_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (params->type == GGML_TASK_TYPE_INIT) { @@ -16051,14 +16045,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm return; } -#ifdef GGML_USE_CUBLAS - bool skip_cpu = ggml_cuda_compute_forward(params, tensor); - if (skip_cpu) { - return; - } - GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU); - GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU); -#elif defined(GGML_USE_VULKAN) +#if defined(GGML_USE_VULKAN) const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor); #ifdef GGML_VULKAN_CHECK_RESULTS if (skip_cpu) { @@ -16070,7 +16057,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU); GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU); -#endif // GGML_USE_CUBLAS +#endif // GGML_USE_VULKAN #ifdef GGML_USE_SYCL bool skip_cpu = ggml_sycl_compute_forward(params, tensor); diff --git a/llama.cpp b/llama.cpp index e4db288dd..b8bef6daf 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2040,6 +2040,11 @@ struct llama_model { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { +#ifdef GGML_USE_CUBLAS + if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { + ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); + } +#endif ggml_backend_buffer_free(buf); } } @@ -5033,6 +5038,13 @@ static bool llm_load_tensors( size_t first, last; ml.get_mapping_range(&first, &last, ctx); buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first); +#ifdef GGML_USE_CUBLAS + if (n_layer >= n_gpu_layers) { + ggml_backend_cuda_register_host_buffer( + ggml_backend_buffer_get_base(buf), + ggml_backend_buffer_get_size(buf)); + } +#endif } #ifdef GGML_USE_METAL else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) { @@ -8231,7 +8243,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -8601,12 +8612,15 @@ static struct ggml_cgraph * llama_build_graph( } // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends - // to fix this, we assign the norm layer manually to the backend of its layer - if (il != -1 && strcmp(name, "norm") == 0) { - for (auto * backend : lctx.backends) { - if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) { - ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); - break; + // FIXME: fix in ggml_backend_sched + const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer; + if (batch.n_tokens < 32 || full_offload) { + if (il != -1 && strcmp(name, "norm") == 0) { + for (auto * backend : lctx.backends) { + if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) { + ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); + break; + } } } } @@ -13107,27 +13121,25 @@ struct llama_context * llama_new_context_with_model( ctx->backends.push_back(ctx->backend_metal); } #elif defined(GGML_USE_CUBLAS) - if (model->n_gpu_layers > 0) { + if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used - if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { - ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); + ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } else { + // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU + for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { + ggml_backend_t backend = ggml_backend_cuda_init(device); if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); + LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); - } else { - // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU - for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { - ggml_backend_t backend = ggml_backend_cuda_init(device); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } } } #elif defined(GGML_USE_VULKAN) @@ -13285,14 +13297,17 @@ struct llama_context * llama_new_context_with_model( ggml_backend_t backend = ctx->backends[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); - LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, - ggml_backend_buft_name(buft), - size / 1024.0 / 1024.0); + if (size > 1) { + LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, + ggml_backend_buft_name(buft), + size / 1024.0 / 1024.0); + } } // note: the number of splits during measure is higher than during inference due to the kv shift int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); - LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits); + LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes); + LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); } }