diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index b38f48edf..025405a2c 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -52,6 +52,7 @@ class Model: endianess: gguf.GGUFEndian use_temp_file: bool lazy: bool + model_name: str | None part_names: list[str] is_safetensors: bool hparams: dict[str, Any] @@ -64,7 +65,7 @@ class Model: # subclasses should define this! model_arch: gguf.MODEL_ARCH - def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool): + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None): if type(self) is Model: raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") self.dir_model = dir_model @@ -73,6 +74,7 @@ class Model: self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file self.lazy = not eager + self.model_name = model_name self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") self.is_safetensors = len(self.part_names) > 0 if not self.is_safetensors: @@ -182,7 +184,7 @@ class Model: return new_name def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.block_count) if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: @@ -665,7 +667,7 @@ class GPTNeoXModel(Model): def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -798,7 +800,7 @@ class MPTModel(Model): def set_gguf_parameters(self): block_count = self.hparams["n_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_block_count(block_count) @@ -850,7 +852,7 @@ class OrionModel(Model): raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_file_type(self.ftype) - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -887,7 +889,7 @@ class BaichuanModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -1010,7 +1012,7 @@ class XverseModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -1206,7 +1208,7 @@ class StableLMModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -1681,7 +1683,7 @@ class GPT2Model(Model): model_arch = gguf.MODEL_ARCH.GPT2 def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_ctx"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) @@ -2248,7 +2250,7 @@ class GemmaModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -2348,7 +2350,7 @@ class MambaModel(Model): # Fail early for models which don't have a block expansion factor of 2 assert d_inner == 2 * d_model - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading @@ -2852,7 +2854,7 @@ def main() -> None: logger.error(f"Model {hparams['architectures'][0]} is not supported") sys.exit(1) - model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy) + model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name) logger.info("Set model parameters") model_instance.set_gguf_parameters()