gguf : fix conflicts

This commit is contained in:
M. Yusuf Sarıgöz 2023-08-17 18:51:14 +03:00
commit 2f8fc92d86
16 changed files with 1487 additions and 1669 deletions

185
.github/ISSUE_TEMPLATE/custom.md vendored Normal file
View File

@ -0,0 +1,185 @@
---
name: Issue and enhancement template
about: Used to report issues and request enhancements for llama.cpp
title: "[User] Insert summary of your issue or enhancement.."
labels: ''
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
# Current Behavior
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
* Physical (or virtual) hardware you are using, e.g. for Linux:
`$ lscpu`
* Operating System, e.g. for Linux:
`$ uname -a`
* SDK version, e.g. for Linux:
```
$ python3 --version
$ make --version
$ g++ --version
```
# Failure Information (for bugs)
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
# Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
1. step 1
2. step 2
3. step 3
4. etc.
# Failure Logs
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
Example environment info:
```
llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c
llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID: AuthenticAMD
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization: AMD-V
llama.cpp$ python3 --version
Python 3.10.9
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy 1.24.2
numpydoc 1.5.0
sentencepiece 0.1.97
torch 1.13.1
torchvision 0.14.1
llama.cpp$ make --version | head -1
GNU Make 4.3
$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
```
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
```
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 8192
llama_model_load: n_mult = 256
llama_model_load: n_head = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
1 -> ''
12148 -> 'Please'
3802 -> ' close'
596 -> ' your'
2228 -> ' issue'
746 -> ' when'
372 -> ' it'
756 -> ' has'
1063 -> ' been'
7699 -> ' answered'
29889 -> '.'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
main: mem per token = 71159620 bytes
main: load time = 19309.95 ms
main: sample time = 168.62 ms
main: predict time = 223895.61 ms / 888.47 ms per token
main: total time = 246406.42 ms
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
13133115082869 cycles # 3.611 GHz (16.77%)
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
23479217109614 instructions # 1.79 insn per cycle
# 0.44 stalled cycles per insn (16.76%)
2353072268027 branches # 647.002 M/sec (16.77%)
1998682780 branch-misses # 0.08% of all branches (16.76%)
247.802177522 seconds time elapsed
3618.573072000 seconds user
18.491698000 seconds sys
```

632
.github/workflows/build.yml vendored Normal file
View File

@ -0,0 +1,632 @@
name: CI
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GGML_NLOOP: 3
GGML_NITER: 1
GGML_N_THREADS: 1
jobs:
ubuntu-focal-make:
runs-on: ubuntu-20.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8
- name: Build
id: make_build
run: |
CC=gcc-8 make
ubuntu-latest-cmake:
runs-on: ubuntu-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake ..
cmake --build . --config Release
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose --timeout 900
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build . --config ${{ matrix.build_type }}
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose --timeout 900
ubuntu-latest-cmake-mpi:
runs-on: ubuntu-latest
continue-on-error: true
strategy:
matrix:
mpi_library: [mpich, libopenmpi-dev]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential ${{ matrix.mpi_library }}
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake -DLLAMA_MPI=ON ..
cmake --build . --config Release
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose
macOS-latest-make:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: make_build
run: |
make
macOS-latest-cmake:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
cmake --build . --config Release
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose --timeout 900
windows-latest-cmake:
runs-on: windows-latest
env:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
strategy:
matrix:
include:
- build: 'noavx'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
- build: 'avx2'
defines: '-DLLAMA_BUILD_SERVER=ON'
- build: 'avx'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF'
- build: 'avx512'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
- build: 'clblast'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
- build: 'openblas'
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- name: Download OpenCL SDK
id: get_opencl
if: ${{ matrix.build == 'clblast' }}
run: |
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
mkdir $env:RUNNER_TEMP/opencl
tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl
- name: Download CLBlast
id: get_clblast
if: ${{ matrix.build == 'clblast' }}
run: |
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z
rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast
foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) {
$txt = Get-Content -Path $f -Raw
$txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
}
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas' }}
run: |
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
mkdir $env:RUNNER_TEMP/openblas
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. ${{ matrix.defines }}
cmake --build . --config Release
- name: Add clblast.dll
id: add_clblast_dll
if: ${{ matrix.build == 'clblast' }}
run: |
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas' }}
run: |
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
- name: Check AVX512F support
id: check_avx512f
if: ${{ matrix.build == 'avx512' }}
continue-on-error: true
run: |
cd build
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
- name: Test
id: cmake_test
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
run: |
cd build
ctest -C Release --verbose --timeout 900
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-cublas:
runs-on: windows-latest
strategy:
matrix:
cuda: ['12.1.0', '11.7.1']
build: ['cublas']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v1
- uses: Jimver/cuda-toolkit@v0.2.10
id: cuda-toolkit
with:
cuda: ${{ matrix.cuda }}
# TODO(green-sky): _dev seems to fail, and non dev are not enought
#sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]'
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON
cmake --build . --config Release
- name: Get commit hash
id: commit
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: pr-mpt/actions-commit-hash@v2
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
if: ${{ matrix.cuda == '12.1.0' }}
# TODO(green-sky): paths are cuda 12 specific
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
mkdir '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\'
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
- name: Copy and pack Cuda runtime
if: ${{ matrix.cuda == '11.7.1' }}
# TODO(green-sky): paths are cuda 11 specific
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
mkdir '.\build\bin\cudart\'
ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin"
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\'
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\'
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
- name: Upload Cuda runtime
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
with:
path: |
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
runs-on: ubuntu-latest
needs:
- ubuntu-focal-make
- ubuntu-latest-cmake
- macOS-latest-make
- macOS-latest-cmake
- windows-latest-cmake
- windows-latest-cmake-cublas
steps:
- name: Download artifacts
id: download-artifact
uses: actions/download-artifact@v3
- name: Get commit hash
id: commit
uses: pr-mpt/actions-commit-hash@v2
- name: Create release
id: create_release
uses: anzz1/action-create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
- name: Upload release
id: upload_release
uses: actions/github-script@v3
with:
github-token: ${{secrets.GITHUB_TOKEN}}
script: |
const path = require('path');
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./artifact')) {
if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,
repo: context.repo.repo,
release_id: release_id,
name: file,
data: await fs.readFileSync(`./artifact/${file}`)
});
}
}
# ubuntu-latest-gcc:
# runs-on: ubuntu-latest
#
# strategy:
# matrix:
# build: [Debug, Release]
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential
# sudo apt-get install cmake
#
# - name: Configure
# run: cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
#
# - name: Build
# run: |
# make
#
# ubuntu-latest-clang:
# runs-on: ubuntu-latest
#
# strategy:
# matrix:
# build: [Debug, Release]
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential
# sudo apt-get install cmake
#
# - name: Configure
# run: cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
#
# - name: Build
# run: |
# make
#
# ubuntu-latest-gcc-sanitized:
# runs-on: ubuntu-latest
#
# strategy:
# matrix:
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Dependencies
# run: |
# sudo apt-get update
# sudo apt-get install build-essential
# sudo apt-get install cmake
#
# - name: Configure
# run: cmake . -DCMAKE_BUILD_TYPE=Debug -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON
#
# - name: Build
# run: |
# make
#
# windows:
# runs-on: windows-latest
#
# strategy:
# matrix:
# build: [Release]
# arch: [Win32, x64]
# include:
# - arch: Win32
# s2arc: x86
# - arch: x64
# s2arc: x64
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
#
# - name: Configure
# run: >
# cmake -S . -B ./build -A ${{ matrix.arch }}
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
#
# - name: Build
# run: |
# cd ./build
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
#
# - name: Upload binaries
# uses: actions/upload-artifact@v1
# with:
# name: llama-bin-${{ matrix.arch }}
# path: build/bin/${{ matrix.build }}
#
# windows-blas:
# runs-on: windows-latest
#
# strategy:
# matrix:
# build: [Release]
# arch: [Win32, x64]
# blas: [ON]
# include:
# - arch: Win32
# obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x86.zip
# s2arc: x86
# - arch: x64
# obzip: https://github.com/xianyi/OpenBLAS/releases/download/v0.3.21/OpenBLAS-0.3.21-x64.zip
# s2arc: x64
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
#
# - name: Fetch OpenBLAS
# if: matrix.blas == 'ON'
# run: |
# C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
# 7z x blas.zip -oblas -y
# copy blas/include/cblas.h .
# copy blas/include/openblas_config.h .
# echo "blasdir=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
#
# - name: Configure
# run: >
# cmake -S . -B ./build -A ${{ matrix.arch }}
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
# -DLLAMA_SUPPORT_OPENBLAS=${{ matrix.blas }}
# -DCMAKE_LIBRARY_PATH="$env:blasdir/lib"
#
# - name: Build
# run: |
# cd ./build
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
#
# - name: Copy libopenblas.dll
# if: matrix.blas == 'ON'
# run: copy "$env:blasdir/bin/libopenblas.dll" build/bin/${{ matrix.build }}
#
# - name: Upload binaries
# if: matrix.blas == 'ON'
# uses: actions/upload-artifact@v1
# with:
# name: llama-blas-bin-${{ matrix.arch }}
# path: build/bin/${{ matrix.build }}
#
# emscripten:
# runs-on: ubuntu-latest
#
# strategy:
# matrix:
# build: [Release]
#
# steps:
# - name: Clone
# uses: actions/checkout@v1
#
# - name: Dependencies
# run: |
# wget -q https://github.com/emscripten-core/emsdk/archive/master.tar.gz
# tar -xvf master.tar.gz
# emsdk-master/emsdk update
# emsdk-master/emsdk install latest
# emsdk-master/emsdk activate latest
#
# - name: Configure
# run: echo "tmp"
#
# - name: Build
# run: |
# pushd emsdk-master
# source ./emsdk_env.sh
# popd
# emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
# make

65
.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,65 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
# GitHub recommends pinning actions to a commit SHA.
# To get a newer version, you will need to update the SHA.
# You can also reference a tag or branch, but the action may change without warning.
name: Publish Docker image
on:
pull_request:
push:
branches:
- master
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
matrix:
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Log in to Docker Hub
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
with:
context: .
push: true
platforms: linux/amd64,linux/arm64
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
uses: docker/build-push-action@v4
with:
context: .
push: ${{ github.event_name == 'push' }}
platforms: linux/amd64,linux/arm64
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}

17
.github/workflows/editorconfig.yml vendored Normal file
View File

@ -0,0 +1,17 @@
name: EditorConfig Checker
on:
push:
branches:
- master
pull_request:
branches:
- master
jobs:
editorconfig:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: editorconfig-checker/action-editorconfig-checker@main
- run: editorconfig-checker

20
.github/workflows/tidy-post.yml vendored Normal file
View File

@ -0,0 +1,20 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

23
.github/workflows/tidy-review.yml vendored Normal file
View File

@ -0,0 +1,23 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

View File

@ -298,7 +298,7 @@ for part_name in part_names:
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data) gguf_writer.write_tensor_data(data)
gguf_writer.close() gguf_writer.close()

View File

@ -1,972 +0,0 @@
#!/usr/bin/env python
import argparse
import concurrent.futures
import copy
import enum
import faulthandler
import functools
import io
import itertools
import json
import math
import mmap
import pickle
import re
import signal
import struct
import sys
import zipfile
import numpy as np
from abc import ABCMeta, abstractmethod
from dataclasses import dataclass
from pathlib import Path
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, Union)
from sentencepiece import SentencePieceProcessor # type: ignore
if TYPE_CHECKING:
from typing_extensions import TypeAlias
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
@dataclass(frozen=True)
class UnquantizedDataType:
name: str
DT_F16 = UnquantizedDataType('F16')
DT_F32 = UnquantizedDataType('F32')
DT_I32 = UnquantizedDataType('I32')
DT_BF16 = UnquantizedDataType('BF16')
DataType = Union[UnquantizedDataType]
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = {
DT_F32: 0,
DT_F16: 1,
}
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
DT_BF16: np.dtype(np.uint16),
DT_F16: np.dtype(np.float16),
DT_F32: np.dtype(np.float32),
DT_I32: np.dtype(np.int32),
}
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
class GGMLFileType(enum.Enum):
AllF32 = 0
MostlyF16 = 1 # except 1d tensors
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
if len(tensor.shape) == 1:
# 1D tensors are always F32.
return DT_F32
elif self == GGMLFileType.AllF32:
return DT_F32
elif self == GGMLFileType.MostlyF16:
return DT_F16
else:
raise ValueError(self)
# TODO: this is LLaMA specific
def make_tensors_list() -> List[str]:
ret = [
'tok_embeddings.weight',
'norm.weight',
'output.weight',
]
for i in range(80): # maximum number of layer
ret += [
f'layers.{i}.attention.wq.weight',
f'layers.{i}.attention.wk.weight',
f'layers.{i}.attention.wv.weight',
f'layers.{i}.attention.wo.weight',
f'layers.{i}.attention_norm.weight',
f'layers.{i}.feed_forward.w1.weight',
f'layers.{i}.feed_forward.w2.weight',
f'layers.{i}.feed_forward.w3.weight',
f'layers.{i}.ffn_norm.weight',
]
return ret
# TODO: this should be generalized for non-LLaMA models
TENSORS_LIST = make_tensors_list()
TENSORS_SET = set(TENSORS_LIST)
def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
for n_mult in range(8192, 1, -1):
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
if calc_ff == n_ff:
return n_mult
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
@dataclass
class Params:
n_vocab: int
n_embd: int
n_mult: int
n_head: int
n_layer: int
n_kv_head: Optional[int] # This parameter is only used for Llama 2
@staticmethod
def guessed(model: 'LazyModel') -> 'Params':
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_head=n_embd // 128 # guessed
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = 256,
n_head = n_head,
n_layer = n_layer,
n_kv_head = None,
)
@staticmethod
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))
n_vocab = config["vocab_size"];
n_embd = config["hidden_size"];
n_head = config["num_attention_heads"];
n_layer = config["num_hidden_layers"];
n_ff = config["intermediate_size"];
n_kv_head = config.get("num_key_value_heads")
n_mult = find_n_mult(n_ff, n_embd);
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_kv_head = n_kv_head,
)
# LLaMA v2 70B params.json
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
@staticmethod
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))
n_vocab = config["vocab_size"];
n_embd = config["dim"];
n_head = config["n_heads"];
n_layer = config["n_layers"];
n_mult = config["multiple_of"];
if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0]
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_mult = n_mult,
n_head = n_head,
n_layer = n_layer,
n_kv_head = None,
)
@staticmethod
def load(model_plus: 'ModelPlus') -> 'Params':
hf_config_path = model_plus.paths[0].parent / "config.json"
orig_config_path = model_plus.paths[0].parent / "params.json"
if hf_config_path.exists():
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
elif orig_config_path.exists():
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
else:
params = Params.guessed(model_plus.model)
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
return params
class BpeVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
added_tokens: Dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}
vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def bpe_tokens(self) -> Iterable[Tuple[bytes, float]]:
tokenizer = self.bpe_tokenizer
from transformers.models.gpt2 import tokenization_gpt2
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i, item in enumerate(tokenizer):
text: bytes = item.encode("utf-8")
score: float = -i
yield text, score
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: Dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(i)
text: bytes = piece.encode("utf-8")
score: float = tokenizer.get_score(i)
yield text, score
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score
def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
Vocab = Union[BpeVocab, SentencePieceVocab]
def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
class Tensor(metaclass=ABCMeta):
data_type: DataType
@abstractmethod
def astype(self, data_type: DataType) -> 'Tensor': ...
@abstractmethod
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
@abstractmethod
def part(self, n_part: int) -> 'UnquantizedTensor': ...
@abstractmethod
def to_ggml(self) -> 'GGMLCompatibleTensor': ...
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
fp32_arr = bf16_arr.astype(np.uint32) << 16
return fp32_arr.view(np.float32)
class UnquantizedTensor(Tensor):
def __init__(self, ndarray: NDArray) -> None:
assert isinstance(ndarray, np.ndarray)
self.ndarray = ndarray
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
def astype(self, data_type: DataType) -> Tensor:
dtype = DATA_TYPE_TO_NUMPY[data_type]
if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))
def to_ggml(self) -> 'UnquantizedTensor':
return self
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
def part(self, n_part: int) -> 'UnquantizedTensor':
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
tensor = lazy_tensor.load()
assert isinstance(tensor, UnquantizedTensor)
# double-check:
actual_shape = list(tensor.ndarray.shape)
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
if convert:
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
else:
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
return tensor.ndarray
GGMLCompatibleTensor = Union[UnquantizedTensor]
class DeferredPermutedTensor(Tensor):
def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
self.base = base
self.n_head = n_head
self.data_type = self.base.data_type
def astype(self, data_type: DataType) -> Tensor:
return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
def to_ggml(self) -> GGMLCompatibleTensor:
return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
raise Exception("shouldn't permute twice")
@dataclass
class LazyTensor:
_load: Callable[[], Tensor]
shape: List[int]
data_type: DataType
description: str
def load(self) -> Tensor:
ret = self._load()
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> 'LazyTensor':
self.validate_conversion_to(data_type)
def load() -> Tensor:
return self.load().astype(data_type)
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
def validate_conversion_to(self, data_type: DataType) -> None:
if data_type == self.data_type:
return
LazyModel = Dict[str, LazyTensor]
@dataclass
class ModelPlus:
model: LazyModel
paths: List[Path] # Where this was read from.
format: Literal['ggml', 'torch', 'safetensors']
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
def merge_sharded(models: List[LazyModel]) -> LazyModel:
# Original LLaMA models have each file contain one part of each tensor.
# Use a dict instead of a set to preserve order.
names = {name: None for model in models for name in model}
def convert(name: str) -> LazyTensor:
lazy_tensors: List[LazyTensor] = [model[name] for model in models]
if len(lazy_tensors) == 1:
# only one file; don't go through this procedure since there might
# be quantized tensors
return lazy_tensors[0]
if len(lazy_tensors[0].shape) == 1:
# the tensor is just duplicated in every file
return lazy_tensors[0]
if name.startswith('tok_embeddings.') or \
name.endswith('.attention.wo.weight') or \
name.endswith('.feed_forward.w2.weight'):
# split by columns
axis = 1
else:
# split by rows
axis = 0
concatenated_shape = list(lazy_tensors[0].shape)
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
def load() -> UnquantizedTensor:
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
return UnquantizedTensor(concatenated)
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
return {name: convert(name) for name in names}
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
formats = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?"
format = formats.pop()
paths = [path for mp in models_plus for path in mp.paths]
# Use the first non-None vocab, if any.
try:
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
except StopIteration:
vocab = None
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
# Transformers models put different tensors in different files, but
# don't split indivdual tensors between files.
model: LazyModel = {}
for mp in models_plus:
model.update(mp.model)
else:
model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute(n_head, n_kv_head)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().part(n_part)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
out: LazyModel = {}
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
out["norm.weight"] = model["model.norm.weight"]
out["output.weight"] = model["lm_head.weight"]
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
else:
break
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"]
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"]
return out
# Functionality that simulates `torch.load` but where individual tensors are
# only loaded into memory on demand, not all at once.
# PyTorch can't do this natively as of time of writing:
# - https://github.com/pytorch/pytorch/issues/64327
# This allows us to de-shard without multiplying RAM usage, and also
# conveniently drops the PyTorch dependency (though we still need numpy).
@dataclass
class LazyStorageKind:
data_type: DataType
@dataclass
class LazyStorage:
load: Callable[[int, int], NDArray]
kind: LazyStorageKind
description: str
class LazyUnpickler(pickle.Unpickler):
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
super().__init__(fp)
self.data_base_path = data_base_path
self.zip_file = zip_file
def persistent_load(self, pid: Any) -> Any:
assert pid[0] == 'storage'
assert isinstance(pid[1], LazyStorageKind)
data_type = pid[1].data_type
filename_stem = pid[2]
filename = self.data_base_path + '/' + filename_stem
info = self.zip_file.getinfo(filename)
def load(offset: int, elm_count: int) -> NDArray:
dtype = DATA_TYPE_TO_NUMPY.get(data_type)
if dtype is None:
raise Exception("tensor stored in unsupported format")
fp = self.zip_file.open(info)
fp.seek(offset * dtype.itemsize)
size = elm_count * dtype.itemsize
data = fp.read(size)
assert len(data) == size
return np.frombuffer(data, dtype)
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
return LazyStorage(load=load, kind=pid[1], description=description)
# @staticmethod
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
# pyright: ignore[reportSelfClsParameterName]
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
assert isinstance(storage, LazyStorage)
def load() -> UnquantizedTensor:
elm_count = stride[0] * size[0]
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
description = f'pickled storage_offset={storage_offset} in {storage.description}'
return LazyTensor(load, list(size), storage.kind.data_type, description)
# @staticmethod
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
CLASSES: Dict[Any, Any] = {
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
('torch', 'Tensor'): LazyTensor,
}
def find_class(self, module: str, name: str) -> Any:
if not module.startswith('torch'):
return super().find_class(module, name)
return self.CLASSES[(module, name)]
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
zf = zipfile.ZipFile(outer_fp)
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
assert len(pickle_paths) == 1, pickle_paths
pickle_fp = zf.open(pickle_paths[0], 'r')
unpickler = LazyUnpickler(pickle_fp,
data_base_path=pickle_paths[0][:-4],
zip_file=zf)
model = unpickler.load()
as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
'BF16': DT_BF16,
'F16': DT_F16,
'F32': DT_F32,
'I32': DT_I32,
}
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
header_size, = struct.unpack('<Q', fp.read(8))
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
# Use mmap for the actual data to avoid race conditions with the file offset.
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
byte_buf = mapped[8 + header_size:]
def convert(info: Dict[str, Any]) -> LazyTensor:
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
shape: List[int] = info['shape']
begin, end = info['data_offsets']
assert 0 <= begin <= end <= len(byte_buf)
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
buf = byte_buf[begin:end]
def load() -> UnquantizedTensor:
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
return LazyTensor(load, shape, data_type, description)
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
def must_read(fp: IO[bytes], length: int) -> bytes:
ret = fp.read(length)
if len(ret) < length:
raise Exception("unexpectedly reached end of file")
return ret
@functools.lru_cache(maxsize=None)
def lazy_load_file(path: Path) -> ModelPlus:
fp = open(path, 'rb')
first8 = fp.read(8)
fp.seek(0)
if first8[:2] == b'PK':
# A zip file, i.e. PyTorch format
return lazy_load_torch_file(fp, path)
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
# Probably safetensors
return lazy_load_safetensors_file(fp, path)
else:
raise ValueError(f"unknown format: {path}")
In = TypeVar('In')
Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one
output value buffered per thread.'''
with concurrent.futures.ThreadPoolExecutor() as executor:
futures: List[concurrent.futures.Future[Out]] = []
items_rev = list(iterable)[::-1]
for i in range(min(concurrency, len(items_rev))):
futures.append(executor.submit(func, items_rev.pop()))
while futures:
result = futures.pop(0).result()
if items_rev:
futures.append(executor.submit(func, items_rev.pop()))
yield result
def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
if params.n_vocab == vocab.vocab_size_base:
print("Ignoring added_tokens.json since model matches vocab size without it.")
vocab.added_tokens_list = []
vocab.vocab_size = vocab.vocab_size_base
return
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
if vocab.fname_added_tokens is not None:
msg += f" combined with {vocab.fname_added_tokens}"
msg += f" has {vocab.vocab_size})."
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
raise Exception(msg)
class OutputFile:
def __init__(self, fname_out: Path) -> None:
self.fout = open(fname_out, "wb")
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
self.fout.write(b"ggjt"[::-1]) # magic
values = [
1, # file version
params.n_vocab,
params.n_embd,
params.n_mult,
params.n_head,
params.n_layer,
params.n_embd // params.n_head, # rot (obsolete)
file_type.value,
]
self.fout.write(struct.pack("i" * len(values), *values))
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
sname = name.encode('utf-8')
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
self.fout.write(sname)
self.fout.seek((self.fout.tell() + 31) & -32)
def write_vocab(self, vocab: Vocab) -> None:
for text, score in vocab.all_tokens():
self.fout.write(struct.pack("i", len(text)))
self.fout.write(text)
self.fout.write(struct.pack("f", score))
@staticmethod
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
of = OutputFile(fname_out)
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
of = OutputFile(fname_out)
of.write_file_header(params, file_type=GGMLFileType.AllF32)
of.write_vocab(vocab)
of.fout.close()
@staticmethod
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
of.write_file_header(params, file_type)
print("Writing vocab...")
of.write_vocab(vocab)
def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
name, lazy_tensor = item
return lazy_tensor.load().to_ggml().ndarray
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model)))
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
ndarray.tofile(of.fout)
of.fout.close()
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
wq_type = model["layers.0.attention.wq.weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
return GGMLFileType.AllF32
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
return GGMLFileType.MostlyF16
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
raise Exception(f"Unexpected combination of types: {name_to_type}")
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
if "lm_head.weight" in model:
model = convert_transformers_to_orig(model, params)
model = filter_and_sort_tensors(model)
return model
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
for (name, tensor) in model.items()}
def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model.
'''
# Support the following patterns:
patterns: List[Tuple[str, str]] = [
# - x.00.pth, x.01.pth, etc.
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
# x.bin, x.bin.1, etc.
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
]
for regex, replacement in patterns:
if re.search(regex, path.name):
new_path = path.with_name(re.sub(regex, replacement, path.name))
if new_path.exists():
return new_path
return None
def find_multifile_paths(path: Path) -> List[Path]:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the whole list of paths in the model.
'''
ret: List[Path] = []
for i in itertools.count():
nth_path = nth_multifile_path(path, i)
if nth_path is None:
break
ret.append(nth_path)
if not ret:
# No matches. This should only happen if the file was named, e.g.,
# foo.0, and there was no file named foo. Oh well, try to process it
# as a single file.
return [path]
return ret
def load_some_model(path: Path) -> ModelPlus:
'''Load a model of any supported format.'''
# Be extra-friendly and accept either a file or a directory:
if path.is_dir():
# Check if it's a set of safetensors files first
files = list(path.glob("model-00001-of-*.safetensors"))
if not files:
# Try the PyTorch patterns too, with lower priority
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
files = [file for glob in globs for file in path.glob(glob)]
if not files:
# Try GGML too, but with lower priority, since if both a non-GGML
# model and a GGML model exist in the same directory, we assume the
# latter was converted from the former.
files = list(path.glob("ggml-model*.bin*"))
if not files:
raise Exception(f"Can't find model in directory {path}")
if len(files) > 1:
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
path = files[0]
paths = find_multifile_paths(path)
models_plus: List[ModelPlus] = []
for path in paths:
print(f"Loading model file {path}")
models_plus.append(lazy_load_file(path))
model_plus = merge_multifile_models(models_plus)
return model_plus
def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
return {name: model[name] for name in TENSORS_LIST if name in model}
def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
print(f"vocabtype: {vocabtype}")
# Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might
# be in the parent of that.
if path.is_dir():
vocab_file = "tokenizer.model"
if vocabtype == 'bpe':
vocab_file = "vocab.json"
path2 = path / vocab_file
# Use `.parent` instead of /.. to handle the symlink case better.
path3 = path.parent / vocab_file
if path2.exists():
path = path2
elif path3.exists():
path = path3
else:
raise FileNotFoundError(
f"Could not find tokenizer.model in {path} or its parent; "
"if it's in another directory, pass the directory as --vocab-dir")
added_tokens_path = path.parent / "added_tokens.json"
print(f"Loading vocab file {path}")
if vocabtype == "bpe":
return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
elif vocabtype == "spm":
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
else:
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
namestr = {
GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16",
}[file_type]
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
if ret in model_paths:
sys.stderr.write(
f"Error: Default output path ({ret}) would overwrite the input. "
"Please explicitly specify a path using --outfile.\n")
sys.exit(1)
return ret
def do_dump_model(model_plus: ModelPlus) -> None:
print(f"model_plus.paths = {model_plus.paths!r}")
print(f"model_plus.format = {model_plus.format!r}")
print(f"model_plus.vocab = {model_plus.vocab!r}")
for name, lazy_tensor in model_plus.model.items():
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
def main(args_in: Optional[List[str]] = None) -> None:
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)")
args = parser.parse_args(args_in)
vocab: Vocab
if args.dump_single:
model_plus = lazy_load_file(args.model)
do_dump_model(model_plus)
elif args.vocab_only:
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
assert args.outfile, "need --outfile if using --vocab-only"
outfile = args.outfile
OutputFile.write_vocab_only(outfile, vocab)
print(f"Wrote {outfile}")
else:
model_plus = load_some_model(args.model)
if args.dump:
do_dump_model(model_plus)
return
if model_plus.vocab is not None and args.vocab_dir is None:
vocab = model_plus.vocab
else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir, args.vocabtype)
params = Params.load(model_plus)
model = model_plus.model
model = do_necessary_conversions(model, params)
output_type = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, output_type)
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
OutputFile.write_all(outfile, params, output_type, model, vocab)
print(f"Wrote {outfile}")
if __name__ == '__main__':
main()

811
convert.py Normal file → Executable file

File diff suppressed because it is too large Load Diff

254
gguf.py
View File

@ -4,7 +4,7 @@ import struct
import tempfile import tempfile
import numpy as np import numpy as np
from enum import IntEnum from enum import IntEnum, auto
from typing import Any, IO, List from typing import Any, IO, List
# #
@ -29,24 +29,24 @@ KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
# LLM # LLM
KEY_LLM_CONTEXT_LENGTH = "{llm}.context_length" KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
KEY_LLM_EMBEDDING_LENGTH = "{llm}.embedding_length" KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
KEY_LLM_BLOCK_COUNT = "{llm}.block_count" KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
KEY_LLM_FEED_FORWARD_LENGTH = "{llm}.feed_forward_length" KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
KEY_LLM_USE_PARALLEL_RESIDUAL = "{llm}.use_parallel_residual" KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
KEY_LLM_TENSOR_DATA_LAYOUT = "{llm}.tensor_data_layout" KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
# attention # attention
KEY_ATTENTION_HEAD_COUNT = "{llm}.attention.head_count" KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{llm}.attention.head_count_kv" KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{llm}.attention.max_alibi_bias" KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{llm}.attention.clamp_kqv" KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{llm}.attention.layer_norm_epsilon" KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{llm}.attention.layer_norm_rms_epsilon" KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE # RoPE
KEY_ROPE_DIMENSION_COUNT = "{llm}.rope.dimension_count" KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_SCALE = "{llm}.rope.scale" KEY_ROPE_SCALE = "{arch}.rope.scale"
# tokenization # tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
@ -67,34 +67,141 @@ KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
# #
def get_tensor_name_map(n_blocks: int): class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_NORM = auto()
MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
}
MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: {
# TODO
},
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
def should_skip_tensor(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
for skip in MODEL_TENSOR_SKIP.get(arch, []):
for i in range(n_blocks):
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
return True
return False
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
tensor_map = {} tensor_map = {}
# Token embeddings # Token embeddings
mapped_to = "token_embd" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings # Position embeddings
mapped_to = "pos_embd" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
tensor_map["transformer.wpe"] = mapped_to # gpt2 tensor_map["transformer.wpe"] = mapped_to # gpt2
# Output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Output norm # Output norm
mapped_to = "output_norm" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth tensor_map["norm"] = mapped_to # llama-pth
# Output
mapped_to = "output" # Rope frequencies
tensor_map["embed_out"] = mapped_to # gptneox mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth tensor_map["rope.freqs"] = mapped_to # llama-pth
# Attention and fee-forward layer blocks
# Attention and feed-forward blocks
for i in range(0, n_blocks): for i in range(0, n_blocks):
# Attention norm # Attention norm
mapped_to = "blk."+str(i)+".attn_norm" # TODO: is there are simpler way to write these 2 lines in Python?
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
@ -102,56 +209,93 @@ def get_tensor_name_map(n_blocks: int):
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2 # Attention norm 2
mapped_to = "blk."+str(i)+".attn_norm_2" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
# Attention query-key-value # Attention query-key-value
mapped_to = "blk."+str(i)+".attn_qkv" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query # Attention query
mapped_to = "blk."+str(i)+".attn_q" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key # Attention key
mapped_to = "blk."+str(i)+".attn_k" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value # Attention value
mapped_to = "blk."+str(i)+".attn_v" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output # Attention output
mapped_to = "blk."+str(i)+".attn_output" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm # Feed-forward norm
mapped_to = "blk."+str(i)+".ffn_norm" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up # Feed-forward up
mapped_to = "blk."+str(i)+".ffn_up" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate # Feed-forward gate
mapped_to = "blk."+str(i)+".ffn_gate" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down # Feed-forward down
mapped_to = "blk."+str(i)+".ffn_down" mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
@ -201,15 +345,16 @@ class GGUFValueType(IntEnum):
class GGUFWriter: class GGUFWriter:
def __init__(self, path: str, architecture: str): def __init__(self, path: str, arch: str):
self.fout = open(path, "wb") self.fout = open(path, "wb")
self.arch = architecture self.arch = arch
self.offset_tensor = 0 self.offset_tensor = 0
self.data_alignment = GGUF_DEFAULT_ALIGNMENT self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.kv_data = b"" self.kv_data = b""
self.kv_data_count = 0 self.kv_data_count = 0
self.ti_data = b"" self.ti_data = b""
self.ti_data_count = 0 self.ti_data_count = 0
self.add_architecture()
def write_header_to_file(self): def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC)) self.fout.write(struct.pack("<I", GGUF_MAGIC))
@ -347,7 +492,7 @@ class GGUFWriter:
if pad != 0: if pad != 0:
self.temp_file.write(bytes([0] * pad)) self.temp_file.write(bytes([0] * pad))
def write_tensor_to_file(self, tensor: np.ndarray): def write_tensor_data(self, tensor: np.ndarray):
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell() pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0: if pad != 0:
self.fout.write(bytes([0] * pad)) self.fout.write(bytes([0] * pad))
@ -384,7 +529,7 @@ class GGUFWriter:
self.add_string(KEY_GENERAL_AUTHOR, author) self.add_string(KEY_GENERAL_AUTHOR, author)
def add_tensor_data_layout(self, layout: str): def add_tensor_data_layout(self, layout: str):
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=self.arch), layout) self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_url(self, url: str): def add_url(self, url: str):
self.add_string(KEY_GENERAL_URL, url) self.add_string(KEY_GENERAL_URL, url)
@ -414,58 +559,58 @@ class GGUFWriter:
def add_context_length(self, length: int): def add_context_length(self, length: int):
self.add_uint32( self.add_uint32(
KEY_LLM_CONTEXT_LENGTH.format(llm=self.arch), length) KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, length: int): def add_embedding_length(self, length: int):
self.add_uint32( self.add_uint32(
KEY_LLM_EMBEDDING_LENGTH.format(llm=self.arch), length) KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, length: int): def add_block_count(self, length: int):
self.add_uint32( self.add_uint32(
KEY_LLM_BLOCK_COUNT.format(llm=self.arch), length) KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int): def add_feed_forward_length(self, length: int):
self.add_uint32( self.add_uint32(
KEY_LLM_FEED_FORWARD_LENGTH.format(llm=self.arch), length) KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool): def add_parallel_residual(self, use: bool):
self.add_bool( self.add_bool(
KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=self.arch), use) KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_tensor_data_layout(self, layout: str): def add_tensor_data_layout(self, layout: str):
self.add_string( self.add_string(
KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=self.arch), layout) KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_head_count(self, count: int): def add_head_count(self, count: int):
self.add_uint32( self.add_uint32(
KEY_ATTENTION_HEAD_COUNT.format(llm=self.arch), count) KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int): def add_head_count_kv(self, count: int):
self.add_uint32( self.add_uint32(
KEY_ATTENTION_HEAD_COUNT_KV.format(llm=self.arch), count) KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
def add_max_alibi_bias(self, bias: float): def add_max_alibi_bias(self, bias: float):
self.add_float32( self.add_float32(
KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=self.arch), bias) KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, value: float): def add_clamp_kqv(self, value: float):
self.add_float32( self.add_float32(
KEY_ATTENTION_CLAMP_KQV.format(llm=self.arch), value) KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float): def add_layer_norm_eps(self, value: float):
self.add_float32( self.add_float32(
KEY_ATTENTION_LAYERNORM_EPS.format(llm=self.arch), value) KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float): def add_layer_norm_rms_eps(self, value: float):
self.add_float32( self.add_float32(
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=self.arch), value) KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_rope_dimension_count(self, count: int): def add_rope_dimension_count(self, count: int):
self.add_uint32( self.add_uint32(
KEY_ROPE_DIMENSION_COUNT.format(llm=self.arch), count) KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_scale(self, value: float): def add_rope_scale(self, value: float):
self.add_float32(KEY_ROPE_SCALE.format(llm=self.arch), value) self.add_float32(KEY_ROPE_SCALE.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str): def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model) self.add_string(KEY_TOKENIZER_MODEL, model)
@ -508,6 +653,7 @@ if __name__ == "__main__":
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
gguf_writer.add_custom_alignment(64) gguf_writer.add_custom_alignment(64)
tensor1 = np.ones((32,), dtype=np.float32) * 100.0 tensor1 = np.ones((32,), dtype=np.float32) * 100.0
tensor2 = np.ones((64,), dtype=np.float32) * 101.0 tensor2 = np.ones((64,), dtype=np.float32) * 101.0
tensor3 = np.ones((96,), dtype=np.float32) * 102.0 tensor3 = np.ones((96,), dtype=np.float32) * 102.0

View File

@ -677,7 +677,8 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
// default hparams (LLaMA 7B) // default hparams (LLaMA 7B)
struct llama_hparams { struct llama_hparams {
uint32_t n_vocab = 32000; uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; uint32_t n_ctx_train = 2048; // the context size used during training
uint32_t n_ctx = 512; // the context size used during inference
uint32_t n_embd = 4096; uint32_t n_embd = 4096;
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_head_kv = 32; uint32_t n_head_kv = 32;
@ -690,8 +691,6 @@ struct llama_hparams {
float rope_freq_base = 10000.0f; float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f; float rope_freq_scale = 1.0f;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const llama_hparams & other) const { bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
} }
@ -1024,6 +1023,8 @@ struct llama_model_loader {
int n_tensors = 0; int n_tensors = 0;
int n_created = 0; int n_created = 0;
int64_t n_elements = 0;
bool use_mmap = false; bool use_mmap = false;
llama_file file; llama_file file;
@ -1047,6 +1048,12 @@ struct llama_model_loader {
file_version = (enum llama_file_version) gguf_get_version(ctx_gguf); file_version = (enum llama_file_version) gguf_get_version(ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
const char * name = gguf_get_tensor_name(ctx_gguf, i);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
n_elements += ggml_nelements(t);
}
// print meta data // print meta data
// TODO: make optional // TODO: make optional
{ {
@ -1116,6 +1123,10 @@ struct llama_model_loader {
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) { struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str()); struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
if (cur == NULL) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
{ {
bool is_ok = true; bool is_ok = true;
for (size_t i = 0; i < ne.size(); ++i) { for (size_t i = 0; i < ne.size(); ++i) {
@ -1325,7 +1336,7 @@ static void llama_model_load_internal(
} }
GGUF_GET(hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, "tokenizer.ggml.tokens"); GGUF_GET(hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, "tokenizer.ggml.tokens");
GGUF_GET(hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.context_length"); GGUF_GET(hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.context_length");
GGUF_GET(hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.embedding_length"); GGUF_GET(hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.embedding_length");
GGUF_GET(hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.feed_forward_length"); GGUF_GET(hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.feed_forward_length");
GGUF_GET(hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.attention.head_count"); GGUF_GET(hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, "llama.attention.head_count");
@ -1401,6 +1412,7 @@ static void llama_model_load_internal(
{ {
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml->file_version)); LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml->file_version));
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx); LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
@ -1412,8 +1424,10 @@ static void llama_model_load_internal(
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
LLAMA_LOG_INFO("%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model size = %s\n", __func__, llama_model_type_name(model.type)); LLAMA_LOG_INFO("%s: model size = %.2fB\n", __func__, ml->n_elements*1e-9);
// TODO: print number of tensors for each quantization
} }
if (vocab_only) { if (vocab_only) {
@ -2302,6 +2316,18 @@ static uint8_t llama_byte_to_char(const llama_vocab & vocab, uint8_t byte) {
return false; return false;
} }
static uint8_t llama_char_to_byte(const llama_vocab & vocab, uint8_t ch) {
if (llama_vocab_type(vocab) == "spm") {
return ch + 3;
}
if (llama_vocab_type(vocab) == "bpe") {
return ch - 32;
}
return false;
}
static std::string llama_escape_whitespace(const std::string& text) { static std::string llama_escape_whitespace(const std::string& text) {
std::string result; std::string result;
bool escaping = false; bool escaping = false;
@ -2438,7 +2464,7 @@ private:
if (p == rev_merge.end()) { if (p == rev_merge.end()) {
// output any symbols that did not form tokens as bytes. // output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int)symbol.n; ++j) { for (int j = 0; j < (int)symbol.n; ++j) {
llama_vocab::id token_id = llama_byte_to_char(vocab_, symbol.text[j]); llama_vocab::id token_id = llama_char_to_byte(vocab_, symbol.text[j]);
output.push_back(token_id); output.push_back(token_id);
} }
return; return;
@ -3365,7 +3391,6 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type; ggml_type quantized_type;
llama_ftype ftype = params->ftype; llama_ftype ftype = params->ftype;
int nthread = params->nthread;
switch (params->ftype) { switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
@ -3391,6 +3416,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
} }
int nthread = params->nthread;
if (nthread <= 0) { if (nthread <= 0) {
nthread = std::thread::hardware_concurrency(); nthread = std::thread::hardware_concurrency();
} }
@ -3661,6 +3688,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} }
} }
// TODO: after the GGUF PR, this likely won't work and needs to be updated
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
@ -4868,8 +4896,8 @@ int llama_token_to_str_with_model(const struct llama_model * model, llama_token
return 0; return 0;
} }
int llama_token_to_str(const struct llama_context * ctx, llama_token token, char * str, int length) { int llama_token_to_str(const struct llama_context * ctx, llama_token token, char * buf, int length) {
return llama_token_to_str_with_model(&ctx->model, token, str, length); return llama_token_to_str_with_model(&ctx->model, token, buf, length);
} }
std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
@ -4886,13 +4914,13 @@ std::string llama_token_to_str(const struct llama_context * ctx, llama_token tok
return std::string(result.data(), result.size()); return std::string(result.data(), result.size());
} }
int llama_token_to_str_bpe(const struct llama_context * ctx, llama_token token, char * str, int length) { int llama_token_to_str_bpe(const struct llama_context * ctx, llama_token token, char * buf, int length) {
if (0 <= token && token < llama_n_vocab_from_model(&ctx->model)) { if (0 <= token && token < llama_n_vocab_from_model(&ctx->model)) {
std::string result = ctx->model.vocab.id_to_token[token].tok; std::string result = ctx->model.vocab.id_to_token[token].tok;
if (length < (int) result.length()) { if (length < (int) result.length()) {
return -result.length(); return -result.length();
} }
memcpy(str, result.c_str(), result.length()); memcpy(buf, result.c_str(), result.length());
return result.length(); return result.length();
} }
return 0; return 0;

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -26,10 +26,10 @@ llama_build_and_test_executable(test-quantize-fns.cpp)
llama_build_and_test_executable(test-quantize-perf.cpp) llama_build_and_test_executable(test-quantize-perf.cpp)
llama_build_and_test_executable(test-sampling.cpp) llama_build_and_test_executable(test-sampling.cpp)
llama_build_executable(test-tokenizer-0.cpp) llama_build_executable(test-tokenizer-0.cpp)
llama_test_executable(test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.bin) llama_test_executable(test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_build_executable(test-tokenizer-1.cpp) llama_build_executable(test-tokenizer-1.cpp)
llama_test_executable(test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.bin) llama_test_executable(test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.bin) #llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp) llama_build_and_test_executable(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW llama_build_and_test_executable(test-grad0.cpp) # SLOW
# llama_build_and_test_executable(test-opt.cpp) # SLOW # llama_build_and_test_executable(test-opt.cpp) # SLOW

View File

@ -89,6 +89,8 @@ int main(int argc, char **argv) {
return 2; return 2;
} }
bool success = true;
for (const auto & test_kv : k_tests()) { for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true); std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
fprintf(stderr, "%s : '%s' tokenized to '%s'\n", fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
@ -104,6 +106,7 @@ int main(int argc, char **argv) {
if (!correct) { if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s'\n", __func__, unescape_whitespace(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__); fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) { for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t); fprintf(stderr, "%6d, ", t);
@ -115,9 +118,7 @@ int main(int argc, char **argv) {
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
llama_free_model(model); success = false;
llama_free(ctx);
return 3;
} }
} }
@ -126,5 +127,5 @@ int main(int argc, char **argv) {
llama_backend_free(); llama_backend_free();
return 0; return success ? 0 : 3;
} }