From 2ff601fc3289f5cf68cffd5d16d32ea006523e11 Mon Sep 17 00:00:00 2001 From: Francis Couture-Harpin Date: Wed, 22 May 2024 23:40:41 -0400 Subject: [PATCH] gguf-py : fix and simplify quantized shape round-trip --- convert-hf-to-gguf.py | 7 +++---- gguf-py/gguf/gguf_reader.py | 6 +++++- gguf-py/gguf/gguf_writer.py | 7 +++---- gguf-py/gguf/quants.py | 16 +++++++++++++++- gguf-py/scripts/gguf-new-metadata.py | 4 +--- 5 files changed, 27 insertions(+), 13 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index daad1c4fc..cf76f0780 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -313,11 +313,10 @@ class Model: data = data.astype(np.float32) data_qtype = gguf.GGMLQuantizationType.F32 - block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype] + shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape + # reverse shape to make it similar to the internal ggml dimension order - shape_str = f"""{{{', '.join(str(n) for n in reversed( - (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size)) - )}}}""" + shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}" # n_dims is implicit in the shape logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index 21b089f8a..e48bc00c3 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -12,6 +12,8 @@ from typing import Any, Literal, NamedTuple, TypeVar, Union import numpy as np import numpy.typing as npt +from .quants import quant_shape_to_byte_shape + if __name__ == "__main__": import sys from pathlib import Path @@ -251,6 +253,7 @@ class GGUFReader: tensor_names.add(tensor_name) ggml_type = GGMLQuantizationType(raw_dtype[0]) n_elems = int(np.prod(dims)) + np_dims = tuple(reversed(dims.tolist())) block_size, type_size = GGML_QUANT_SIZES[ggml_type] n_bytes = n_elems * type_size // block_size data_offs = int(start_offs + offset_tensor[0]) @@ -279,6 +282,7 @@ class GGUFReader: else: item_count = n_bytes item_type = np.uint8 + np_dims = quant_shape_to_byte_shape(np_dims, ggml_type) tensors.append(ReaderTensor( name = tensor_name, tensor_type = ggml_type, @@ -286,7 +290,7 @@ class GGUFReader: n_elements = n_elems, n_bytes = n_bytes, data_offset = data_offs, - data = self._get(data_offs, item_type, item_count), + data = self._get(data_offs, item_type, item_count).reshape(np_dims), field = field, )) self.tensors = tensors diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 8b41b54ea..78bc5461e 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -26,6 +26,8 @@ from .constants import ( TokenType, ) +from .quants import quant_shape_from_byte_shape + logger = logging.getLogger(__name__) @@ -229,10 +231,7 @@ class GGUFWriter: else: dtype = raw_dtype if tensor_dtype == np.uint8: - block_size, type_size = GGML_QUANT_SIZES[raw_dtype] - if tensor_shape[-1] % type_size != 0: - raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})") - tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,) + tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype) n_dims = len(tensor_shape) self.ti_data += self._pack("I", n_dims) for i in range(n_dims): diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index e7fc0eae3..b22eec166 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -1,5 +1,5 @@ from __future__ import annotations -from typing import Callable +from typing import Callable, Sequence from numpy.typing import DTypeLike @@ -9,6 +9,20 @@ from .lazy import LazyNumpyTensor import numpy as np +def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): + block_size, type_size = GGML_QUANT_SIZES[quant_type] + if shape[-1] % block_size != 0: + raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})") + return (*shape[:-1], shape[-1] // block_size * type_size) + + +def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType): + block_size, type_size = GGML_QUANT_SIZES[quant_type] + if shape[-1] % type_size != 0: + raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})") + return (*shape[:-1], shape[-1] // type_size * block_size) + + # same as ggml_compute_fp32_to_bf16 in ggml-impl.h def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: n = n.astype(np.float32, copy=False).view(np.int32) diff --git a/gguf-py/scripts/gguf-new-metadata.py b/gguf-py/scripts/gguf-new-metadata.py index 63d3c5d8f..c9f1927f6 100755 --- a/gguf-py/scripts/gguf-new-metadata.py +++ b/gguf-py/scripts/gguf-new-metadata.py @@ -118,9 +118,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new for tensor in reader.tensors: total_bytes += tensor.n_bytes - # Dimensions are written in reverse order, so flip them first - shape = np.flipud(tensor.shape).tolist() - writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type) + writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type) bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)