mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
stdout : vertical align outputs for better readibility
This commit is contained in:
parent
489537e6cf
commit
3173a62eb9
@ -951,8 +951,9 @@ class OutputFile:
|
|||||||
|
|
||||||
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
|
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
|
||||||
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
||||||
size = ' x '.join(map(str, lazy_tensor.shape))
|
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||||
print(f"[{i+1}/{len(model)}] Writing tensor {name}, size {size}...")
|
padi = len(str(len(model)))
|
||||||
|
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
|
||||||
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
|
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
|
||||||
ndarray.tofile(of.fout)
|
ndarray.tofile(of.fout)
|
||||||
of.fout.close()
|
of.fout.close()
|
||||||
|
14
llama.cpp
14
llama.cpp
@ -262,12 +262,12 @@ static size_t checked_div(size_t a, size_t b) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
|
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
|
||||||
std::string ret = "[" + std::to_string(ne.at(0));
|
char buf[256];
|
||||||
|
snprintf(buf, sizeof(buf), "%5u", ne.at(0));
|
||||||
for (size_t i = 1; i < ne.size(); i++) {
|
for (size_t i = 1; i < ne.size(); i++) {
|
||||||
ret += " x " + std::to_string(ne.at(i));
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
|
||||||
}
|
}
|
||||||
ret += "]";
|
return buf;
|
||||||
return ret;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
|
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
|
||||||
@ -942,8 +942,8 @@ static void llama_model_load_internal(
|
|||||||
ml->ggml_ctx = ctx;
|
ml->ggml_ctx = ctx;
|
||||||
|
|
||||||
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
|
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
|
||||||
model.norm = ml->get_tensor("norm.weight", {n_embd});
|
model.norm = ml->get_tensor("norm.weight", {n_embd});
|
||||||
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
|
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
|
||||||
|
|
||||||
model.layers.resize(n_layer);
|
model.layers.resize(n_layer);
|
||||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
@ -1570,7 +1570,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
tensor.data = read_data.addr;
|
tensor.data = read_data.addr;
|
||||||
model_loader->load_data_for(tensor);
|
model_loader->load_data_for(tensor);
|
||||||
|
|
||||||
printf("[%zu/%zu] %36s - %s, type = %6s, ",
|
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
|
||||||
++idx, model_loader->tensors_map.tensors.size(),
|
++idx, model_loader->tensors_map.tensors.size(),
|
||||||
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
||||||
ggml_type_name(tensor.type));
|
ggml_type_name(tensor.type));
|
||||||
|
Loading…
Reference in New Issue
Block a user