mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants * imatrix: guard Q4_0/Q5_0 against ffn_down craziness --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
4feb4b33ee
commit
334a835a1c
192
ggml-quants.c
192
ggml-quants.c
@ -515,6 +515,7 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
|
||||
quantize_row_q4_0_reference(x, y, k);
|
||||
}
|
||||
|
||||
|
||||
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
|
||||
const int qk = QK4_1;
|
||||
|
||||
@ -3039,6 +3040,197 @@ size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
|
||||
static_assert(QK4_0 == 32, "QK4_0 must be 32");
|
||||
|
||||
if (!quant_weights) {
|
||||
quantize_row_q4_0_reference(x, y, n_per_row);
|
||||
return;
|
||||
}
|
||||
|
||||
float weight[QK4_0];
|
||||
int8_t L[QK4_0];
|
||||
|
||||
float sum_x2 = 0;
|
||||
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
|
||||
float sigma2 = sum_x2/n_per_row;
|
||||
|
||||
const int nb = n_per_row/QK4_0;
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
const float * xb = x + QK4_0 * ib;
|
||||
const float * qw = quant_weights + QK4_0 * ib;
|
||||
for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||
float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
|
||||
y[ib].d = GGML_FP32_TO_FP16(d);
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
y[ib].qs[j] = L[j] | (L[j+16] << 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
}
|
||||
int row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += row_size;
|
||||
}
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
|
||||
static_assert(QK4_1 == 32, "QK4_1 must be 32");
|
||||
|
||||
if (!quant_weights) {
|
||||
quantize_row_q4_1_reference(x, y, n_per_row);
|
||||
return;
|
||||
}
|
||||
|
||||
float weight[QK4_1];
|
||||
uint8_t L[QK4_1], Laux[QK4_1];
|
||||
|
||||
float sum_x2 = 0;
|
||||
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
|
||||
float sigma2 = sum_x2/n_per_row;
|
||||
|
||||
const int nb = n_per_row/QK4_1;
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
const float * xb = x + QK4_1 * ib;
|
||||
const float * qw = quant_weights + QK4_1 * ib;
|
||||
for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||
float min;
|
||||
float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
|
||||
y[ib].d = GGML_FP32_TO_FP16(d);
|
||||
y[ib].m = GGML_FP32_TO_FP16(-min);
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
y[ib].qs[j] = L[j] | (L[j+16] << 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
}
|
||||
int row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += row_size;
|
||||
}
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
|
||||
static_assert(QK5_0 == 32, "QK5_0 must be 32");
|
||||
|
||||
if (!quant_weights) {
|
||||
quantize_row_q5_0_reference(x, y, n_per_row);
|
||||
return;
|
||||
}
|
||||
|
||||
float weight[QK5_0];
|
||||
int8_t L[QK5_0];
|
||||
|
||||
float sum_x2 = 0;
|
||||
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
|
||||
float sigma2 = sum_x2/n_per_row;
|
||||
|
||||
const int nb = n_per_row/QK5_0;
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
const float * xb = x + QK5_0 * ib;
|
||||
const float * qw = quant_weights + QK5_0 * ib;
|
||||
for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||
float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
|
||||
y[ib].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
uint32_t qh = 0;
|
||||
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
const uint8_t xi0 = L[j];
|
||||
const uint8_t xi1 = L[j+16];
|
||||
y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
|
||||
|
||||
// get the 5-th bit and store it in qh at the right position
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||
}
|
||||
|
||||
memcpy(&y[ib].qh, &qh, sizeof(qh));
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
}
|
||||
int row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += row_size;
|
||||
}
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
|
||||
static_assert(QK5_1 == 32, "QK5_1 must be 32");
|
||||
|
||||
if (!quant_weights) {
|
||||
quantize_row_q5_1_reference(x, y, n_per_row);
|
||||
return;
|
||||
}
|
||||
|
||||
float weight[QK5_1];
|
||||
uint8_t L[QK5_1], Laux[QK5_1];
|
||||
|
||||
float sum_x2 = 0;
|
||||
for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
|
||||
float sigma2 = sum_x2/n_per_row;
|
||||
|
||||
const int nb = n_per_row/QK5_1;
|
||||
for (int ib = 0; ib < nb; ++ib) {
|
||||
const float * xb = x + QK5_1 * ib;
|
||||
const float * qw = quant_weights + QK5_1 * ib;
|
||||
for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
|
||||
float min;
|
||||
float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
|
||||
y[ib].d = GGML_FP32_TO_FP16(d);
|
||||
y[ib].m = GGML_FP32_TO_FP16(-min);
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
const uint8_t xi0 = L[j];
|
||||
const uint8_t xi1 = L[j+16];
|
||||
y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
|
||||
// get the 5-th bit and store it in qh at the right position
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||
}
|
||||
memcpy(&y[ib].qh, &qh, sizeof(qh));
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
}
|
||||
int row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += row_size;
|
||||
}
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
// ====================== "True" 2-bit (de)-quantization
|
||||
|
||||
static const uint64_t iq2xxs_grid[256] = {
|
||||
|
@ -253,3 +253,7 @@ size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row,
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
28
ggml.c
28
ggml.c
@ -18674,26 +18674,38 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
GGML_ASSERT(start % QK4_0 == 0);
|
||||
block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
|
||||
result = ggml_quantize_q4_0(src + start, block, n, n, hist);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
GGML_ASSERT(start % QK4_1 == 0);
|
||||
block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
|
||||
result = ggml_quantize_q4_1(src + start, block, n, n, hist);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
GGML_ASSERT(start % QK5_0 == 0);
|
||||
block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
|
||||
result = ggml_quantize_q5_0(src + start, block, n, n, hist);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
GGML_ASSERT(start % QK5_1 == 0);
|
||||
block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
|
||||
result = ggml_quantize_q5_1(src + start, block, n, n, hist);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
|
10
llama.cpp
10
llama.cpp
@ -8374,6 +8374,8 @@ struct quantize_state_internal {
|
||||
int n_k_quantized = 0;
|
||||
int n_fallback = 0;
|
||||
|
||||
bool has_imatrix = false;
|
||||
|
||||
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
|
||||
: model(model)
|
||||
, params(params)
|
||||
@ -8546,6 +8548,13 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||||
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||||
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||||
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
||||
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||||
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||||
}
|
||||
++qs.i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
@ -8669,6 +8678,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
|
||||
if (imatrix_data) {
|
||||
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
|
||||
qs.has_imatrix = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user