mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
Remove default arguments from sampling functions (#1343)
This commit is contained in:
parent
173d0e6419
commit
3924088512
1
.gitignore
vendored
1
.gitignore
vendored
@ -21,6 +21,7 @@ build-sanitize-addr/
|
|||||||
build-sanitize-thread/
|
build-sanitize-thread/
|
||||||
|
|
||||||
models/*
|
models/*
|
||||||
|
*.bin
|
||||||
|
|
||||||
/main
|
/main
|
||||||
/quantize
|
/quantize
|
||||||
|
@ -444,10 +444,10 @@ int main(int argc, char ** argv) {
|
|||||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||||
} else {
|
} else {
|
||||||
// Temperature sampling
|
// Temperature sampling
|
||||||
llama_sample_top_k(ctx, &candidates_p, top_k);
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z);
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||||
llama_sample_typical(ctx, &candidates_p, typical_p);
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||||
llama_sample_top_p(ctx, &candidates_p, top_p);
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||||
id = llama_sample_token(ctx, &candidates_p);
|
id = llama_sample_token(ctx, &candidates_p);
|
||||||
}
|
}
|
||||||
|
@ -1791,7 +1791,7 @@ llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_
|
|||||||
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
|
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
|
||||||
|
|
||||||
// Sample the next word X using top-k sampling
|
// Sample the next word X using top-k sampling
|
||||||
llama_sample_top_k(nullptr, candidates, int(k));
|
llama_sample_top_k(nullptr, candidates, int(k), 1);
|
||||||
if (ctx) {
|
if (ctx) {
|
||||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
}
|
}
|
||||||
|
8
llama.h
8
llama.h
@ -202,16 +202,16 @@ extern "C" {
|
|||||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
|
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||||
|
|
||||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||||
|
|
||||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
|
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||||
|
|
||||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
|
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||||
|
|
||||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
|
@ -32,7 +32,7 @@ void test_top_k(const std::vector<float> & probs,
|
|||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_top_k(nullptr, &candidates_p, k);
|
llama_sample_top_k(nullptr, &candidates_p, k, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
assert(candidates_p.size == expected_probs.size());
|
||||||
@ -57,7 +57,7 @@ void test_top_p(const std::vector<float> & probs,
|
|||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_top_p(nullptr, &candidates_p, p);
|
llama_sample_top_p(nullptr, &candidates_p, p, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
assert(candidates_p.size == expected_probs.size());
|
||||||
@ -80,7 +80,7 @@ void test_tfs(const std::vector<float> & probs,
|
|||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_tail_free(nullptr, &candidates_p, z);
|
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
assert(candidates_p.size == expected_probs.size());
|
||||||
@ -103,7 +103,7 @@ void test_typical(const std::vector<float> & probs,
|
|||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_typical(nullptr, &candidates_p, p);
|
llama_sample_typical(nullptr, &candidates_p, p, 1);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
assert(candidates_p.size == expected_probs.size());
|
assert(candidates_p.size == expected_probs.size());
|
||||||
|
Loading…
x
Reference in New Issue
Block a user